Property inference attacks allow an adversary to extract global properties of the training dataset from a machine learning model. Such attacks have privacy implications for data owners who share their datasets to train machine learning models. Several existing approaches for property inference attacks against deep neural networks have been proposed, but they all rely on the attacker training a large number of shadow models, which induces large computational overhead. In this paper, we consider the setting of property inference attacks in which the attacker can poison a subset of the training dataset and query the trained target model. Motivated by our theoretical analysis of model confidences under poisoning, we design an efficient property inference attack, SNAP, which obtains higher attack success and requires lower amounts of poisoning than the state-of-the-art poisoning-based property inference attack by Mahloujifar et al. For example, on the Census dataset, SNAP achieves 34% higher success rate than Mahloujifar et al. while being 56.5x faster. We also extend our attack to determine if a certain property is present at all in training, and estimate the exact proportion of a property of interest efficiently. We evaluate our attack on several properties of varying proportions from four datasets, and demonstrate SNAP's generality and effectiveness.


翻译:财产推断攻击使敌人能够从机器学习模型中提取培训数据集的全球特性。这种攻击对数据拥有者具有隐私影响,他们分享了数据集,以培训机器学习模型。提出了几种现有的对深神经网络进行财产推断攻击的方法,但它们都依赖攻击者培训大量影子模型,从而导致大量计算间接费用。在本文中,我们认为攻击者可以对培训数据集的一部分进行污染,并查询经过培训的目标模型。我们根据对受毒模式信心的理论分析,设计了高效的财产推断攻击,即SNAP,它获得攻击成功率更高,需要比Mahlooujifar等人的基于中毒财产预测低的中毒程度。例如,在普查数据集中,SNAP的成功率比Mahlooujifar等人高出34%,同时速度要快56.5x。我们还扩大了我们的攻击范围,以确定在培训中是否存在某些财产,我们从四种攻击中估计了准确比例。我们从不同程度和不同程度的数据中评估了不同程度的财产。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员