In recent times deep learning has been widely used for automating various security tasks in Cyber Domains. However, adversaries manipulate data in many situations and diminish the deployed deep learning model's accuracy. One notable example is fooling CAPTCHA data to access the CAPTCHA-based Classifier leading to the critical system being vulnerable to cybersecurity attacks. To alleviate this, we propose a computational framework of game theory to analyze the CAPTCHA-based Classifier's vulnerability, strategy, and outcomes by forming a simultaneous two-player game. We apply the Fast Gradient Symbol Method (FGSM) and One Pixel Attack on CAPTCHA Data to imitate real-life scenarios of possible cyber-attack. Subsequently, to interpret this scenario from a Game theoretical perspective, we represent the interaction in the Stackelberg Game in Kuhn tree to study players' possible behaviors and actions by applying our Classifier's actual predicted values. Thus, we interpret potential attacks in deep learning applications while representing viable defense strategies in the game theory prospect.
翻译:近些年来,深层次的学习被广泛用于网络域内的各种安全任务自动化。 然而, 对手在很多情况下操纵数据, 并降低所部署的深层次学习模型的准确性。 一个显著的例子就是欺骗 CAPTCHA 数据来访问基于 CAPTCHA 的分类器, 导致关键系统易受网络安全攻击。 为了缓解这一点, 我们提议了一个游戏理论计算框架, 分析基于 CAPTCHA 的分类器的脆弱性、 策略和结果, 方法是同时形成双人游戏。 我们运用快速渐变符号法( FGSM ) 和 CAPTCHA 数据的一个像素攻击来模拟可能的网络攻击的真实生活情景。 随后, 为了从游戏理论角度来解释这个情景, 我们代表了库恩树的Stackelberg 游戏的相互作用, 来研究玩家可能的行为和行动, 应用我们分类器的实际预测值。 因此, 我们解释深层次学习应用中的潜在攻击, 并同时代表游戏理论中可行的防御策略 。