We present a framework to statistically audit the privacy guarantee conferred by a differentially private machine learner in practice. While previous works have taken steps toward evaluating privacy loss through poisoning attacks or membership inference, they have been tailored to specific models or have demonstrated low statistical power. Our work develops a general methodology to empirically evaluate the privacy of differentially private machine learning implementations, combining improved privacy search and verification methods with a toolkit of influence-based poisoning attacks. We demonstrate significantly improved auditing power over previous approaches on a variety of models including logistic regression, Naive Bayes, and random forest. Our method can be used to detect privacy violations due to implementation errors or misuse. When violations are not present, it can aid in understanding the amount of information that can be leaked from a given dataset, algorithm, and privacy specification.
翻译:我们提出了一个框架,用于从统计上审计不同私人机器学习者在实践中赋予的隐私保障。虽然以前的工作已经采取步骤,通过中毒袭击或会员推断来评估隐私损失。虽然以前的工作已经采取步骤评估通过中毒袭击或会员推断造成的隐私损失,但已经根据具体模式进行了调整,或显示了低的统计能力。我们的工作开发了一种一般方法,对不同私人机器学习实施的隐私进行实证评估,将改进的隐私搜索和核查方法与基于影响的中毒袭击工具包结合起来。我们展示了比以往对各种模型(包括后勤回归、Nive Bayes和随机森林)采取的做法大为改善的审计能力。我们的方法可以用来检测因执行错误或滥用而侵犯隐私的情况。如果不存在违规情况,它可以帮助了解从特定数据集、算法和隐私规格中泄漏的信息数量。