Federated Recommendation (FR) has received considerable popularity and attention in the past few years. In FR, for each user, its feature vector and interaction data are kept locally on its own client thus are private to others. Without the access to above information, most existing poisoning attacks against recommender systems or federated learning lose validity. Benifiting from this characteristic, FR is commonly considered fairly secured. However, we argue that there is still possible and necessary security improvement could be made in FR. To prove our opinion, in this paper we present FedRecAttack, a model poisoning attack to FR aiming to raise the exposure ratio of target items. In most recommendation scenarios, apart from private user-item interactions (e.g., clicks, watches and purchases), some interactions are public (e.g., likes, follows and comments). Motivated by this point, in FedRecAttack we make use of the public interactions to approximate users' feature vectors, thereby attacker can generate poisoned gradients accordingly and control malicious users to upload the poisoned gradients in a well-designed way. To evaluate the effectiveness and side effects of FedRecAttack, we conduct extensive experiments on three real-world datasets of different sizes from two completely different scenarios. Experimental results demonstrate that our proposed FedRecAttack achieves the state-of-the-art effectiveness while its side effects are negligible. Moreover, even with small proportion (3%) of malicious users and small proportion (1%) of public interactions, FedRecAttack remains highly effective, which reveals that FR is more vulnerable to attack than people commonly considered.


翻译:联邦建议(FR)在过去几年中受到相当的欢迎和关注。在FR中,对于每个用户来说,其特性矢量和互动数据都由本地在自己的客户上保留,因此对其他人来说是私人的。如果无法获取上述信息,大多数针对推荐者系统的中毒袭击或联合学习的学习失去有效性。贝尼根据这一特点,FR通常被认为是相当安全的。然而,我们认为,FR仍然有可能而且有必要改进安全。为了证明我们的意见,我们在本文件中介绍FedRecAttack,一个针对FR的典型中毒袭击模式,目的是提高目标项目的接触率。在大多数建议情景中,除了私人用户-项目互动(例如点击、观察和购买)之外,有些互动是公开的(例如,喜欢、下面和评论 ) 。根据这一点,我们在FedRecack中利用公众的相互作用来接近用户的特性矢量。因此,攻击者可以产生下毒梯度,控制恶意用户上毒梯子的模型,目的是提高目标物品的接触率比率。在大多数建议情况下,除了私人用户的用户(例如点击、观察、观察和购买者)之外,有些互动是公开的效益(例如,FDReack-recack)的拟议的效能的效能,而拟议中,我们用不同比例是完全地实验的结果。在两种不同的结果,而Fed-lax-lax-lax-lax-lax-lax-lax-lax-lax-lax-lax-lax-lax-lax-lax-lax-laxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月17日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员