An interactive mechanism is an algorithm that stores a data set and answers adaptively chosen queries to it. The mechanism is called differentially private, if any adversary cannot distinguish whether a specific individual is in the data set by interacting with the mechanism. We study composition properties of differential privacy in concurrent compositions. In this setting, an adversary interacts with k interactive mechanisms in parallel and can interleave its queries to the mechanisms arbitrarily. Previously, Vadhan and Wang [2021] proved an optimal concurrent composition theorem for pure-differential privacy. We significantly generalize and extend their results. Namely, we prove optimal parallel composition properties for several major notions of differential privacy in the literature, including approximate DP, R\'enyi DP, and zero-concentrated DP. Our results demonstrate that the adversary gains no advantage by interleaving its queries to independently running mechanisms. Hence, interactivity is a feature that differential privacy grants us for free. Concurrently and independently of our work, Vadhan and Zhang [2022] proved an optimal concurrent composition theorem for f-DP [Dong et al., 2022], which implies our result for the approximate DP case.


翻译:互动机制是一种包含数据集并回答自定选择的询问的算法。 如果任何对手无法通过与机制互动来区分某个特定个人是否在数据集中,这个机制被称为有差异的私人机制。 我们研究不同隐私在同时构成中的构成特性。 在这种环境下,对手与 k 互动机制平行互动,可以任意将其询问与机制联系起来。 以前, Vadhan 和 Wang [2021年] 被证明是一种最佳的同步构成, 用于纯粹的隐私。 我们大大地概括和扩展了它们的结果。 也就是说, 我们证明, 包括接近DP、 R\'enyi DP 和零集中化DP在内的文献中若干主要隐私概念的最佳平行构成特征。 我们的结果表明, 敌对者没有通过对独立运行机制的询问而获得优势。 因此, 互动性是一个差异性特征,可以使我们免费获得隐私。 同时, 与我们的工作无关, Vadhan 和Zhang [2022年] 被证明是f-DP [Dong et al, 2022] 的最佳同时构成最佳的特征, 这意味着我们接近DP 的情况的结果。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月18日
Arxiv
0+阅读 · 2022年11月17日
Arxiv
23+阅读 · 2022年2月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员