Given the volume of data needed to train modern machine learning models, external suppliers are increasingly used. However, incorporating external data poses data poisoning risks, wherein attackers manipulate their data to degrade model utility or integrity. Most poisoning defenses presume access to a set of clean data (or base set). While this assumption has been taken for granted, given the fast-growing research on stealthy poisoning attacks, a question arises: can defenders really identify a clean subset within a contaminated dataset to support defenses? This paper starts by examining the impact of poisoned samples on defenses when they are mistakenly mixed into the base set. We analyze five defenses and find that their performance deteriorates dramatically with less than 1% poisoned points in the base set. These findings suggest that sifting out a base set with high precision is key to these defenses' performance. Motivated by these observations, we study how precise existing automated tools and human inspection are at identifying clean data in the presence of data poisoning. Unfortunately, neither effort achieves the precision needed. Worse yet, many of the outcomes are worse than random selection. In addition to uncovering the challenge, we propose a practical countermeasure, Meta-Sift. Our method is based on the insight that existing attacks' poisoned samples shifts from clean data distributions. Hence, training on the clean portion of a dataset and testing on the corrupted portion will result in high prediction loss. Leveraging the insight, we formulate a bilevel optimization to identify clean data and further introduce a suite of techniques to improve efficiency and precision. Our evaluation shows that Meta-Sift can sift a clean base set with 100% precision under a wide range of poisoning attacks. The selected base set is large enough to give rise to successful defenses.


翻译:考虑到培训现代机器学习模型所需的数据数量,外部供应商被越来越多地使用。然而,纳入外部数据带来了数据中毒风险,攻击者操纵其数据以降低模型效用或完整性。大多数中毒防御假设可以获取一组干净数据(或基准集 ) 。鉴于对隐性中毒袭击的研究迅速增加,这一假设是理所当然的,因此产生了一个问题:捍卫者能否真正在被污染的数据集中确定一个干净的子集以支持防御?本文的出发点是,在被污染的样本被错误地混合到基准集时,检查这些样本对防御系统的影响。我们分析了五种防御系统,发现其性能急剧恶化,在基础集中只有不到1%的中毒点。这些结论表明,筛选一个精准的基数(或基准集)是这些防御系统的业绩的关键。我们研究现有的自动工具和人体检查是如何在存在数据中毒的情况下找出干净的数据。不幸的是,没有做出更精确的努力,但更糟糕的是,许多结果比随机选择的要差。除了发现挑战外,我们提议在实际的精确度上进行精确度的反向基础的精确度上进行精确度变化。 精确度,Met-SI-SI-S成功的精确度显示,我们的数据将用一个更精确的精确度测试到现有的数据分析,一个更精确度,我们的现有数据将用一个更精确度。一种方法是用来的精确度。我们用一个更精确的精确的精确性的数据。我们用一种方法, 一种方法是用来在现有的一种方法。在现有的数据进行一个更精确度的精确度的精确度的精确度。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月18日
Arxiv
0+阅读 · 2022年11月17日
Arxiv
0+阅读 · 2022年11月16日
Arxiv
0+阅读 · 2022年11月16日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员