Shape control of deformable objects is a challenging and important robotic problem. This paper proposes a model-free controller using novel 3D global deformation features based on modal analysis. Unlike most existing controllers using geometric features, our controller employs a physically-based deformation feature by decoupling 3D global deformation into low-frequency mode shapes. Although modal analysis is widely adopted in computer vision and simulation, it has not been used in robotic deformation control. We develop a new model-free framework for modal-based deformation control under robot manipulation. Physical interpretation of mode shapes enables us to formulate an analytical deformation Jacobian matrix mapping the robot manipulation onto changes of the modal features. In the Jacobian matrix, unknown geometry and physical properties of the object are treated as low-dimensional modal parameters which can be used to linearly parameterize the closed-loop system. Thus, an adaptive controller with proven stability can be designed to deform the object while online estimating the modal parameters. Simulations and experiments are conducted using linear, planar, and solid objects under different settings. The results not only confirm the superior performance of our controller but also demonstrate its advantages over the baseline method.
翻译:变形物体的变形控制是一个具有挑战性和重要的机器人问题。 本文建议使用基于模式分析的新型 3D 全球变形特性, 不使用模型控制器。 与大多数使用几何特性的现有控制器不同, 我们的控制器使用基于物理的变形特性, 将3D全球变形分离成低频模式形状。 虽然模型分析在计算机视觉和模拟中被广泛采用, 但并未用于机器人变形控制。 我们为机器人操作下的模型变形控制开发了一个没有模型的新框架。 对模式形状的物理解释使我们能够在模型特性变化上绘制分析的变形 Jacobian 矩阵图示机器人操纵图。 在雅各布矩阵中, 该天体的未知的几何形状和物理特性被当作低维模型参数处理, 可用于线性化闭环系统。 因此, 一个经证实稳定性的适应控制器可以设计在网上估计模型参数时使天体变形。 模拟和实验是使用直线、 计划性以及不同环境中的固性物体进行。 其结果不仅证实了我们控制器的高级性能, 也证明了其基线的优势。