This paper proposes a finite element method for solving the periodic steady-state problem for the scalar-valued and vector-valued Poisson equations, a simple reduction model of the Maxwell equations under the Coulomb gauge. Introducing a new potential variable, we reformulate two systems composed of the scalar-valued and vector-valued Poisson problems to a single Hodge-Laplace problem for the 1-form in $\mathbb{R}^4$ using the standard de Rham complex. Consequently, we can directly apply the Finite Element Exterior Calculus (FEEC) theory in $\mathbb{R}^4$ to deduce the well-posedness, stability, and convergence. Numerical examples using the cubical element are reported to validate the theoretical results.
翻译:本文建议了一种有限的要素方法,用于解决卡路里价值和矢量价值的Poisson方程式的周期性稳定状态问题,这是Coulomb 测量表下的马克斯韦尔方程式的简单削减模型。在引入一个新的潜在变量时,我们将由卡路里价值和矢量价值的Poisson问题组成的两个系统重新组合成一个单一的Hodge-Laplace问题,使用标准标准德Rham 复合体($\mathbb{R ⁇ 4$)解决1种形式的1种问题。因此,我们可以直接应用以 $\mathbb{R ⁇ 4$为单位的Finite Element Exterferculus(FEECE) 理论来推断精度、稳定性和趋同性。报告使用立方元素的数值实例来验证理论结果。