Recent work on explainable clustering allows describing clusters when the features are interpretable. However, much modern machine learning focuses on complex data such as images, text, and graphs where deep learning is used but the raw features of data are not interpretable. This paper explores a novel setting for performing clustering on complex data while simultaneously generating explanations using interpretable tags. We propose deep descriptive clustering that performs sub-symbolic representation learning on complex data while generating explanations based on symbolic data. We form good clusters by maximizing the mutual information between empirical distribution on the inputs and the induced clustering labels for clustering objectives. We generate explanations by solving an integer linear programming that generates concise and orthogonal descriptions for each cluster. Finally, we allow the explanation to inform better clustering by proposing a novel pairwise loss with self-generated constraints to maximize the clustering and explanation module's consistency. Experimental results on public data demonstrate that our model outperforms competitive baselines in clustering performance while offering high-quality cluster-level explanations.


翻译:最近关于可解释的集群的工作使得在可以解释特征时可以描述群集。然而,许多现代机器学习侧重于使用深层学习但数据原始特征无法解释的图像、文本和图表等复杂数据。本文探讨了在复杂数据上进行群集的新环境,同时使用可解释的标记作出解释。我们建议进行深层次的描述性分组,在复杂数据上进行亚共性代表式学习,同时根据象征性数据作出解释。我们通过最大限度地利用关于投入的经验分布和为群集目标而诱发的群集标签之间的相互信息来形成良好的群集。我们通过解决一整线性编程,为每个群集提供简明和正方形的描述,从而产生解释性能。最后,我们允许通过提出带有自我产生的限制的新颖的对等损失,使组合和解释模块的一致性最大化。关于公共数据的实验结果表明,我们的模型在群集业绩方面超过了竞争性的基线,同时提供高质量的群集层次的解释。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
10+阅读 · 2019年3月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Learning of Conjugate Mappings
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
3+阅读 · 2020年2月5日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
10+阅读 · 2019年3月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Deep Learning of Conjugate Mappings
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
3+阅读 · 2020年2月5日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Top
微信扫码咨询专知VIP会员