Spurious correlations allow flexible models to predict well during training but poorly on related test distributions. Recent work has shown that models that satisfy particular independencies involving correlation-inducing \textit{nuisance} variables have guarantees on their test performance. Enforcing such independencies requires nuisances to be observed during training. However, nuisances, such as demographics or image background labels, are often missing. Enforcing independence on just the observed data does not imply independence on the entire population. Here we derive \acrshort{mmd} estimators used for invariance objectives under missing nuisances. On simulations and clinical data, optimizing through these estimates achieves test performance similar to using estimators that make use of the full data.
翻译:原始的关联性使得灵活的模型能够在培训期间很好地预测,但在相关的测试分布上却差强人意。 最近的工作表明,满足涉及相关诱导\ textit{nisance}变量的特定不依赖性的模型对其测试性能有保障。 执行这种不依赖性要求在培训期间观察到干扰性。 但是,骚扰性(如人口统计学或图像背景标签)往往缺失。 仅仅执行观察到的数据的独立性并不意味着整个人口的独立性。 在这里,我们得出了在缺失的骚扰下用于变量目标的估算值。 在模拟和临床数据上,通过这些估算优化实现测试性能,与使用全部数据的估算值相似。