We study sparse group Lasso for high-dimensional double sparse linear regression, where the parameter of interest is simultaneously element-wise and group-wise sparse. This problem is an important instance of the simultaneously structured model -- an actively studied topic in statistics and machine learning. In the noiseless case, matching upper and lower bounds on sample complexity are established for the exact recovery of sparse vectors and for stable estimation of approximately sparse vectors, respectively. In the noisy case, upper and matching minimax lower bounds for estimation error are obtained. We also consider the debiased sparse group Lasso and investigate its asymptotic property for the purpose of statistical inference. Finally, numerical studies are provided to support the theoretical results.
翻译:我们研究高维的双线性回归的Lasso群落。 关注的参数是元素的,而群体是的。 这个问题是同时结构化模型的一个重要实例 -- -- 这是统计和机器学习中积极研究的一个专题。 在无噪音的情况下, 将抽样复杂性的上下界限相匹配, 以精确回收稀散矢量, 并稳定估计大约稀散矢量。 在吵闹的案例中, 获取了上下角和最下角匹配的估算误差值。 我们还考虑了被贬低的稀疏群落Lasso, 并为了统计推理的目的, 调查其无症状属性。 最后, 提供了数字研究, 以支持理论结果 。