We propose a new approach to the optimal placement of sensors for the problem of reconstructing geophysical fields from sparse measurements. Our method consists of two stages. In the first stage, we estimate the variability of the physical field as a function of spatial coordinates by approximating its information entropy through the Conditional PixelCNN network. To calculate the entropy, a new ordering of a two-dimensional data array (spiral ordering) is proposed, which makes it possible to obtain the entropy of a physical field simultaneously for several spatial scales. In the second stage, the entropy of the physical field is used to initialize the distribution of optimal sensor locations. This distribution is further optimized with the Concrete Autoencoder architecture with the straight-through gradient estimator and adversarial loss to simultaneously minimize the number of sensors and maximize reconstruction accuracy. Our method scales linearly with data size, unlike commonly used Principal Component Analysis. We demonstrate our method on the two examples: (a) temperature and (b) salinity fields around the Barents Sea and the Svalbard group of islands. For these examples, we compute the reconstruction error of our method and a few baselines. We test our approach against two baselines (1) PCA with QR factorization and (2) climatology. We find out that the obtained optimal sensor locations have clear physical interpretation and correspond to the boundaries between sea currents.
翻译:我们建议采用新的方法,最佳地放置感应器,以解决从稀少的测量量中重建地球物理场的问题。我们的方法包括两个阶段。在第一阶段,我们估计物理场的变异性,作为空间坐标的函数,通过条件式像素CNN网络近似地调整其信息星座。为了计算星座,我们提议对二维数据阵列(呼吸命令)进行新的排序,以便能够同时为几个空间尺度获得物理场的增缩。在第二阶段,物理场的增缩被用来初始化最佳传感器位置的分布。这种分配进一步优化,具体自动电解码结构结构与直通的梯度估计器和对抗性损失相匹配,以同时尽量减少传感器的数量并最大限度地提高重建准确性。我们的方法与通常使用的主元分析不同,我们用两种例子展示了我们的方法:(a)温度和(b)巴伦特海周围的盐层和斯瓦尔巴德群岛群的盐质场。关于这些例子,我们用最佳的测算方法与我们的最佳测定的测算基准之间,我们用两个测算了我们的最佳测算器和测定了我们的最佳测定的海标基线。