The implicit stochastic gradient descent (ISGD), a proximal version of SGD, is gaining interest in the literature due to its stability over (explicit) SGD. In this paper, we conduct an in-depth analysis of the two modes of ISGD for smooth convex functions, namely proximal Robbins-Monro (proxRM) and proximal Poylak-Ruppert (proxPR) procedures, for their use in statistical inference on model parameters. Specifically, we derive non-asymptotic point estimation error bounds of both proxRM and proxPR iterates and their limiting distributions, and propose on-line estimators of their asymptotic covariance matrices that require only a single run of ISGD. The latter estimators are used to construct valid confidence intervals for the model parameters. Our analysis is free of the generalized linear model assumption that has limited the preceding analyses, and employs feasible procedures. Our on-line covariance matrix estimators appear to be the first of this kind in the ISGD literature.
翻译:隐含的测深梯度下沉(ISGD)是SGD的近似版本,对文献越来越感兴趣,因为它在(明确的)SGD上具有稳定性。在本文件中,我们对ISGD的两种模式进行深入分析,即光滑的二次曲线函数模式,即准Robbins-Monro(ProxRM)和准Polylak-Ruppert(proxPR)程序,用于模型参数的统计推断。具体地说,我们得出了ProxRM和ProxPRERExerates及其限制分布的非抽点估计误差界限,并提议在线估计其单次运行ISGD的无症状共变矩阵。后者用于为模型参数构建有效的信任间隔。我们的分析没有使用限制先前分析的通用线性模型假设,而是采用可行的程序。我们的在线变量矩阵估计器似乎是ISGD文献中这类模型的第一个。