This work details CipherGAN, an architecture inspired by CycleGAN used for inferring the underlying cipher mapping given banks of unpaired ciphertext and plaintext. We demonstrate that CipherGAN is capable of cracking language data enciphered using shift and Vigenere ciphers to a high degree of fidelity and for vocabularies much larger than previously achieved. We present how CycleGAN can be made compatible with discrete data and train in a stable way. We then prove that the technique used in CipherGAN avoids the common problem of uninformative discrimination associated with GANs applied to discrete data.
翻译:此工作详细描述 CipherGAN, 这个由 CypeGAN 所启发的架构, 用于推算基础密码映射, 包括未加密的密码和普通文本。 我们证明 CipherGAN 能够破解语言数据, 使用高度忠诚的转换和 Vigenere 密码来破解语言数据, 以及比以往更大的词汇。 我们展示了 CypeGAN 如何与离散数据兼容, 并以稳定的方式进行训练 。 然后我们证明 CipherGAN 所使用的技术避免了与离散数据相关的 GAN 的不信息化歧视这一常见问题 。