导读
MLmindset作者发布了一篇生成对抗网络合集文章,整合了各类关于GAN的资源,如GANs文章、模型、代码、应用、课程、书籍、教程等等。这份完整的GANs资源合集为研究者提供了完美的生成对抗网络学习路线。
https://machinelearningmindset.com/generative-adversarial-networks-roadmap/
作者 | Amirsina Torfi
编译 | Xiaowen
目录
① 简介
② 论文-类型及模型、应用
VanillaGAN、CGAN、LAPGAN、DCGAN、AAE、GRAN、InfoGan、BiGan等
③ 课程
④书籍
⑤ 教程
简介
生成对抗网络(Generative Adversarial Network,简称GAN)是非监督式学习的一种方法,通过让两个神经网络相互博弈的方式进行学习。
生成对抗网络由一个生成网络与一个判别网络组成。生成网络从潜在空间(latent space)中随机采样作为输入,其输出结果需要尽量模仿训练集中的真实样本。判别网络的输入则为真实样本或生成网络的输出,其目的是将生成网络的输出从真实样本中尽可能分辨出来。而生成网络则要尽可能地欺骗判别网络。两个网络相互对抗、不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真实。
论文
这一章节是关于近年来GAN的相关发表论文。
Image by: Rouzbeh Asghari Shirvani
论文1:Generative Adversarial Nets
文章地址:http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
代码地址:https://github.com/goodfeli/adversarial
论文2:ENERGY-BASED GENERATIVE ADVERSARIAL NETWORK
文章地址:https://arxiv.org/pdf/1609.03126v2.pdf
代码地址:https://github.com/buriburisuri/ebgan
论文3:Which Training Methods for GANs do Actually Converge
文章地址:https://arxiv.org/pdf/1801.04406.pdf
代码地址:https://github.com/LMescheder/GAN_stability
Conditional Generative Adversarial Networks (CGAN)
论文1:Conditional generative adversarial nets
文章地址:https://arxiv.org/abs/1411.1784
代码地址:https://github.com/zhangqianhui/Conditional-GAN
论文2:Photo-realistic single image super-resolution using a GAN
文章地址:https://arxiv.org/pdf/1609.04802.pdf
代码地址:https://github.com/tensorlayer/srgan
论文3:Image-to-Image Translation with Conditional Adversarial Networks
文章地址:https://arxiv.org/abs/1611.07004
代码地址:https://github.com/phillipi/pix2pix
论文4:Generative Visual Manipulation on the Natural Image Manifold
文章地址:https://arxiv.org/abs/1609.03552
代码地址:https://github.com/junyanz/iGAN
论文1:Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
文章地址:http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks.pdf
代码地址:https://github.com/witnessai/LAPGAN
论文1:Deep Convolutional Generative Adversarial Networks
文章地址:http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks.pdf
代码地址:https://github.com/witnessai/LAPGAN
论文2:Generative Adversarial Text to Image Synthesis
文章地址:https://arxiv.org/pdf/1605.05396.pdf
代码地址:https://github.com/reedscot/icml2016
论文1:Adversarial Autoencoders
文章地址:https://arxiv.org/abs/1511.05644
代码地址:https://github.com/Naresh1318/Adversarial_Autoencoder
论文1:Generating images with recurrent adversarial networks
文章地址:https://arxiv.org/abs/1602.05110
代码地址:https://github.com/jiwoongim/GRAN
论文1:Infogan: Information maximizing GANs
文章地址:http://papers.nips.cc/paper/6399-infogan-interpretable-representation
代码地址:https://github.com/openai/InfoGAN
论文1:Adversarial feature learning
文章地址:https://arxiv.org/abs/1605.09782
代码地址:https://github.com/jeffdonahue/bigan
GANs理论和训练 Theory and Tranining
论文1:Energy-based generative adversarial network
文章地址:https://arxiv.org/pdf/1609.03126v2.pdf
代码地址:https://github.com/buriburisuri/ebgan
论文2:Which Training Methods for GANs do actually Converge
文章地址:https://arxiv.org/pdf/1801.04406.pdf
代码地址:https://github.com/LMescheder/GAN_stability
论文3:Improved Techniques for Training GANs
文章地址:https://arxiv.org/abs/1609.04468
代码地址:https://github.com/openai/improved-gan
论文4:Towards Principled Methods for Training Generative Adversarial Networks
文章地址:https://arxiv.org/abs/1701.04862
论文5:Least Squares Generative Adversarial Networks
文章地址:https://arxiv.org/abs/1611.04076
代码地址:https://github.com/pfnet-research/chainer-LSGAN
论文6:Wasserstein GAN
文章地址:https://arxiv.org/abs/1701.07875
代码地址:https://github.com/martinarjovsky/WassersteinGAN
论文7:Improved Training of Wasserstein GANs
文章地址:https://arxiv.org/abs/1704.00028
代码地址:https://github.com/igul222/improved_wgan_training
论文8:Generalization and Equilibrium in Generative Adversarial Nets
文章地址:https://arxiv.org/abs/1703.00573
论文9:GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
文章地址:https://arxiv.org/abs/1605.09782
代码地址:https://github.com/bioinf-jku/TTUR
论文10:Spectral Normalization for Generative Adversarial Networks
文章地址:https://openreview.net/forum?id=B1QRgziT-
代码地址:https://github.com/minhnhat93/tf-SNDCGAN
图像合成 Image Synthesis
论文1:Generative Adversarial Text to Image Synthesis
文章地址:https://arxiv.org/abs/1605.05396
代码地址:https://github.com/reedscot/icml201
论文2:Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
文章地址:https://arxiv.org/abs/1612.00005v1
代码地址:https://github.com/Evolving-AI-Lab/ppgn
论文3:Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
文章地址:https://arxiv.org/abs/1511.06434
代码地址:https://github.com/jacobgil/keras-dcgan
论文4:Progressive Growing of GANs for Improved Quality, Stability, and Variation
文章地址:http://research.nvidia.com/publication/2017-10_Progressive-Growing-of
代码地址:https://github.com/tkarras/progressive_growing_of_gans
论文5:StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
文章地址:https://arxiv.org/pdf/1612.03242v1.pdf
代码地址:https://github.com/hanzhanggit/StackGAN
论文6:Self-Attention Generative Adversarial Networks
文章地址:https://arxiv.org/abs/1805.08318
代码地址:https://github.com/heykeetae/Self-Attention-GAN
论文7:Large Scale GAN Training for High Fidelity Natural Image Synthesis
文章地址:https://arxiv.org/abs/1809.11096
图像翻译 Image-to-image translation
论文1:Image-to-image translation using conditional adversarial nets
文章地址:https://arxiv.org/pdf/1611.07004v1.pdf
代码地址:https://github.com/phillipi/pix2pix
论文2:Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
文章地址:https://arxiv.org/abs/1703.05192
代码地址:https://github.com/carpedm20/DiscoGAN-pytorch
论文3:Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
文章地址:https://junyanz.github.io/CycleGAN/
代码地址:https://github.com/junyanz/CycleGAN
论文4:CoGAN: Coupled Generative Adversarial Networks
文章地址:https://arxiv.org/abs/1606.07536
代码地址:https://github.com/andrewliao11/CoGAN-tensorflow
论文5:Unsupervised Image-to-Image Translation Networks
文章地址:https://arxiv.org/abs/1703.00848
论文6:High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
文章地址:https://arxiv.org/abs/1711.11585
论文7:UNIT: UNsupervised Image-to-image Translation Networks
文章地址:https://arxiv.org/abs/1703.00848
代码地址:https://github.com/mingyuliutw/UNIT
论文8:Multimodal Unsupervised Image-to-Image Translation
文章地址:https://arxiv.org/abs/1804.04732
代码地址:https://github.com/nvlabs/MUNIt
超像素 Super-resolution
论文1:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
文章地址:https://arxiv.org/abs/1609.04802
代码地址:https://github.com/leehomyc/Photo-Realistic-Super-Resoluton
论文2:High-Quality Face Image Super-Resolution Using Conditional Generative Adversarial Networks
文章地址:https://arxiv.org/pdf/1707.00737.pdf
论文3:Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network
文章地址:https://arxiv.org/pdf/1811.00344.pdf
代码地址:https://github.com/subeeshvasu/2018_subeesh_epsr_eccvw
文本生成图像 Text to Image
论文1:TAC-GAN – Text Conditioned Auxiliary Classifier Generative Adversarial Network
文章地址:https://arxiv.org/pdf/1703.06412.pdf
代码地址:https://github.com/dashayushman/TAC-GAN
论文2:Generative Adversarial Text to Image Synthesis
文章地址:https://arxiv.org/pdf/1605.05396.pdf
代码地址:https://github.com/paarthneekhara/text-to-imag
论文3:Learning What and Where to Draw
文章地址:http://www.scottreed.info/files/nips2016.pdf
代码地址:https://github.com/reedscot/nips2016
图像编辑 Image Editing
论文1:Invertible Conditional GANs for image editing
文章地址:https://arxiv.org/pdf/1611.06355.pdf
代码地址:https://github.com/Guim3/IcGAN
论文2:Image De-raining Using a Conditional Generative Adversarial Network
文章地址:https://arxiv.org/abs/1701.05957
代码地址:https://github.com/hezhangsprinter/ID-CGAN
ETC
论文1:Generating multi-label discrete patient records using generative adversarial networks
文章地址:https://arxiv.org/abs/1703.06490
代码地址:https://github.com/mp2893/medgan
论文2:Adversarial Generation of Natural Language
文章地址:https://arxiv.org/abs/1705.10929
论文3:Language Generation with Recurrent Generative Adversarial Networks without Pre-training
文章地址:https://arxiv.org/abs/1706.01399
代码地址:https://github.com/amirbar/rnn.wgan
论文4:Adversarial ranking for language generation
文章地址:http://papers.nips.cc/paper/6908-adversarial-ranking-for-language-generation
代码地址:https://github.com/desire2020/RankGAN
论文5:Adversarial Training Methods for Semi-Supervised Text Classification
文章地址:https://arxiv.org/abs/1605.07725
代码地址:https://github.com/aonotas/adversarial_text
课程
Deep Learning: GANs and Variational Autoencoders by Udemy: [https://www.udemy.com/deep-learning-gans-and-variational-autoencoders/]
Differentiable Inference and Generative Models by the University of Toronto: [http://www.cs.toronto.edu/~duvenaud/courses/csc2541/]
Learning Generative Adversarial Networks by Udemy: [https://www.udemy.com/learning-generative-adversarial-networks/]
书籍
GANs in Action - Deep learning with Generative Adversarial Networks by manning Publications: [https://www.manning.com/books/gans-in-action]
教程
GANs from Scratch 1: A deep introduction. With code in PyTorch and TensorFlow: [https://medium.com/ai-society/gans-from-scratch-1-a-deep-introduction-with-code-in-pytorch-and-tensorflow-cb03cdcdba0f]
Keep Calm and train a GAN. Pitfalls and Tips on training Generative Adversarial Networks: [https://medium.com/@utk.is.here/keep-calm-and-train-a-gan-pitfalls-and-tips-on-training-generative-adversarial-networks-edd529764aa9]
CVPR 2018 Tutorial on GANs: [https://sites.google.com/view/cvpr2018tutorialongans/]
Introductory guide to Generative Adversarial Networks (GANs) and their promise!: [https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners]
Generative Adversarial Networks for beginners: [https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners]
Understanding and building Generative Adversarial Networks(GANs): [https://becominghuman.ai/understanding-and-building-generative-adversarial-networks-gans-8de7c1dc0e25]
-END-
专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~
专知《深度学习:算法到实战》课程全部完成!550+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程