题目: Weakly-Supervised Disentanglement Without Compromises
摘要:
智能体应该能够通过观察其环境中的变化来学习有用的表示。首先,从理论上证明,只知道有多少因素发生了变化,而不知道哪些因素发生了变化,就足以学习解缠表示。其次,我们提供了实用的算法,可以从成对的图像中学习分离的表示,而不需要对组、单个因素或已更改的因素的数量进行注释。第三,我们进行了大规模的实证研究,并表明这样的观测对足以可靠地学习几个基准数据集上的解缠表示。最后,我们评估我们的表示学习,并发现它们在不同的任务集合上同时是有用的,包括协变量转移下的泛化、公平性和抽象推理。总的来说,结果表明,在现实场景中,弱监督能够帮助学习有用的解缠表示。