We present a new semi-supervised domain adaptation framework that combines a novel auto-encoder-based domain adaptation model with a simultaneous learning scheme providing stable improvements over state-of-the-art domain adaptation models. Our framework holds strong distribution matching property by training both source and target auto-encoders using a novel simultaneous learning scheme on a single graph with an optimally modified MMD loss objective function. Additionally, we design a semi-supervised classification approach by transferring the aligned domain invariant feature spaces from source domain to the target domain. We evaluate on three datasets and show proof that our framework can effectively solve both fragile convergence (adversarial) and weak distribution matching problems between source and target feature space (discrepancy) with a high `speed' of adaptation requiring a very low number of iterations.
翻译:我们提出了一个新的半监督域适应框架,将新的基于自动编码的基于自动编码的域适应模式与一个同时学习计划相结合,为最新领域适应模式提供稳定的改进。我们的框架通过在单一图上培训源和目标自动编码者,同时使用一个具有最佳修改 MMD 损失客观功能的新颖的同步学习计划来培训源和目标自动编码者,从而具有很强的分布匹配属性。此外,我们设计了一种半监督分类方法,将统一的域差异特性空间从源域转移到目标域。我们评估了三个数据集,并证明我们的框架能够有效地解决源和目标特性空间(差异性)之间脆弱的趋同(对抗性)和薄弱的分布匹配问题,而适应的“速度”要求非常低的迭代数。