Graph Neural Networks (GNNs) have become a popular approach for various applications, ranging from social network analysis to modeling chemical properties of molecules. While GNNs often show remarkable performance on public datasets, they can struggle to learn long-range dependencies in the data due to over-smoothing and over-squashing tendencies. To alleviate this challenge, we propose PCAPass, a method which combines Principal Component Analysis (PCA) and message passing for generating node embeddings in an unsupervised manner and leverages gradient boosted decision trees for classification tasks. We show empirically that this approach provides competitive performance compared to popular GNNs on node classification benchmarks, while gathering information from longer distance neighborhoods. Our research demonstrates that applying dimensionality reduction with message passing and skip connections is a promising mechanism for aggregating long-range dependencies in graph structured data.
翻译:神经网络图(GNNs)已成为各种应用的流行方法,从社会网络分析到分子化学特性建模,从社会网络分析到分子化学特性模型等,从社会网络分析到分子化学特性模型等各种应用到各种应用。虽然GNNs通常在公共数据集中表现出显著的成绩,但由于过度移动和过度隔绝的趋势,他们很难了解数据的长期依赖性。为了减轻这一挑战,我们建议PCAPass,这是一个将主要组成部分分析(PCA)和生成节点嵌入信息传递相结合的方法,它利用梯度推动决策树进行分类。我们从经验上表明,这一方法在收集更远的周边信息的同时,与流行的GNNs相比,在节点分类基准上提供了竞争性的绩效。我们的研究显示,在图像结构化数据中,将长距离依赖性减少信息传递和跳过连接是一种很有希望的机制。