We present a method that learns neural shadow fields which are neural scene representations that are only learnt from the shadows present in the scene. While traditional shape-from-shadow (SfS) algorithms reconstruct geometry from shadows, they assume a fixed scanning setup and fail to generalize to complex scenes. Neural rendering algorithms, on the other hand, rely on photometric consistency between RGB images, but largely ignore physical cues such as shadows, which have been shown to provide valuable information about the scene. We observe that shadows are a powerful cue that can constrain neural scene representations to learn SfS, and even outperform NeRF to reconstruct otherwise hidden geometry. We propose a graphics-inspired differentiable approach to render accurate shadows with volumetric rendering, predicting a shadow map that can be compared to the ground truth shadow. Even with just binary shadow maps, we show that neural rendering can localize the object and estimate coarse geometry. Our approach reveals that sparse cues in images can be used to estimate geometry using differentiable volumetric rendering. Moreover, our framework is highly generalizable and can work alongside existing 3D reconstruction techniques that otherwise only use photometric consistency.
翻译:我们提出了一个方法来学习神经阴影场,这些神经阴影场是神经场景的演示,只是从场景的阴影中学习。虽然传统的形状和阴影(SfS)算法从阴影中重建几何,但它们假设了固定的扫描设置,没有向复杂的场景进行概括。神经成像算法依靠RGB图像之间的光度一致性,但基本上忽略了阴影等物理线索,这些阴影被显示为提供关于场景的宝贵信息。我们观察到,阴影是一个强大的提示,它能够限制神经场演示,学习SfS,甚至超越NeRF来重建隐蔽的几何学。我们提出了一种由图形启发而不同的方法,用体积转换来提供准确的阴影,预测一个可以与地面真理影影影相比的影子地图。即使有了二进影图,我们也表明,神经成像可以将对象本地化,并估计粗微的几何几何几何测量。我们的方法表明,图像中的微提示器可以用不同的量度来估计几何。此外,我们提出的框架是高度通用的,只能与现有的三维系。