Equivariant neural networks, whose hidden features transform according to representations of a group G acting on the data, exhibit training efficiency and an improved generalisation performance. In this work, we extend group invariant and equivariant representation learning to the field of unsupervised deep learning. We propose a general learning strategy based on an encoder-decoder framework in which the latent representation is separated in an invariant term and an equivariant group action component. The key idea is that the network learns to encode and decode data to and from a group-invariant representation by additionally learning to predict the appropriate group action to align input and output pose to solve the reconstruction task. We derive the necessary conditions on the equivariant encoder, and we present a construction valid for any G, both discrete and continuous. We describe explicitly our construction for rotations, translations and permutations. We test the validity and the robustness of our approach in a variety of experiments with diverse data types employing different network architectures.
翻译:根据G组在数据、展示培训效率和改进总体性表现方面的表现,其隐藏特征会根据G组在数据、展示培训效率和改进总体性表现方面的表现而改变。在这项工作中,我们将群体变换和等同性表现学习推广到不受监督的深层学习领域。我们提出了一个基于编码器脱码框架的一般学习战略,在这种框架中,潜在代表在变化的术语和等同性群体行动组成部分中被分离。关键思想是,网络学会对数据进行编码和解码,通过额外学习预测适当的群体行动来协调投入和产出,从而解决重建任务。我们在电子变异编码器上创造必要的条件,我们为任何G(离散的和连续的)提出一个建筑。我们明确地描述了我们用于旋转、翻译和变异的构造。我们用不同的网络结构来测试我们方法的有效性和坚固性,在各种不同数据类型的实验中,我们用不同的网络结构来测试我们的方法。