Motivated by the increasing abundance of data describing real-world networks that exhibit dynamical features, we propose an extension of the Exponential RandomGraph Models (ERGMs) that accommodates the time variation of its parameters. Inspired by the fast growing literature on Dynamic Conditional Score-driven models each parameter evolves according to an updating rule driven by the score of the ERGM distribution. We demonstrate the flexibility of the score-driven ERGMs (SD-ERGMs), both as data generating processes and as filters, and we show the advantages of the dynamic version with respect to the static one. We discuss two applications to time-varying networks from financial and political systems. First, we consider the prediction of future links in the Italian inter-bank credit network. Second, we show that the SD-ERGM allows to discriminate between static or time-varying parameters when used to model the dynamics of the US congress co-voting network.


翻译:我们提议扩展能容纳其参数时间变化的 " 指数随机格格 " 模型(ERGMs),受动态条件计分模型快速增长的文献的启发,每个参数根据ERGM分布得分驱动的更新规则演变。我们展示了作为数据生成过程和过滤器的以分数驱动的ERGMs(SD-ERGMs)的灵活性,并展示了动态版本对静态版本的优势。我们讨论了金融和政治系统对时间变化网络的两种应用。首先,我们考虑了意大利银行间信用网络未来连接的预测。第二,我们表明SD-ERGM允许在用来模拟美国国会联合投票网络动态时区分静态或时间变化参数。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员