This paper introduces a novel Ito diffusion process to model high-frequency financial data, which can accommodate low-frequency volatility dynamics by embedding the discrete-time non-linear exponential GARCH structure with log-integrated volatility in a continuous instantaneous volatility process. The key feature of the proposed model is that, unlike existing GARCH-Ito models, the instantaneous volatility process has a non-linear structure, which ensures that the log-integrated volatilities have the realized GARCH structure. We call this the exponential realized GARCH-Ito (ERGI) model. Given the auto-regressive structure of the log-integrated volatility, we propose a quasi-likelihood estimation procedure for parameter estimation and establish its asymptotic properties. We conduct a simulation study to check the finite sample performance of the proposed model and an empirical study with 50 assets among the S\&P 500 compositions. The numerical studies show the advantages of the new proposed model.
翻译:本文介绍了一种新型的Ito扩散程序,用于模拟高频金融数据,通过将离散的非线性指数性GRCH结构与日志集成波动结合成一个连续瞬时波动过程,可以容纳低频波动动态,拟议模型的主要特征是,与现有的GRCH-Ito模型不同,瞬时波动过程有一个非线性结构,确保日志集成的挥发性具有已实现的GRCH结构。我们称之为指数化已实现的GARCH-Ito(ERGI)模型。鉴于日志集成波动的自动反向结构,我们提议了参数估计的准类似估计程序,并建立了其微量特性。我们进行了模拟研究,以检查拟议模型的有限样本性能,并用S ⁇ P 500组成中的50个资产进行了实验性研究。数字研究显示了新拟议模型的优势。