Conditional local independence is an asymmetric independence relation among continuous time stochastic processes. It describes whether the evolution of one process is directly influenced by another process given the histories of additional processes, and it is important for the description and learning of causal relations among processes. We develop a model-free framework for testing the hypothesis that a counting process is conditionally locally independent of another process. To this end, we introduce a new functional parameter called the Local Covariance Measure (LCM), which quantifies deviations from the hypothesis. Following the principles of double machine learning, we propose an estimator of the LCM and a test of the hypothesis using nonparametric estimators and sample splitting or cross-fitting. We call this test the (cross-fitted) Local Covariance Test ((X)-LCT), and we show that its level and power can be controlled uniformly, provided that the nonparametric estimators are consistent with modest rates. We illustrate the theory by an example based on a marginalized Cox model with time-dependent covariates, and we show in simulations that when double machine learning is used in combination with cross-fitting, then the test works well without restrictive parametric assumptions.
翻译:有条件的地方独立是连续时间切换过程之间的非对称独立关系。 它描述一个过程的演变是否直接受到另一个过程的直接影响, 并且对于描述和学习各个过程之间的因果关系非常重要。 我们开发了一个模型框架, 测试一个计数过程是有条件的, 与另一个过程无关的假设。 为此, 我们引入一个新的功能参数, 叫做本地差异度量度( LCM ), 该参数可以量化与假设的偏差 。 遵循双机学习的原则, 我们提议一个 LCM 的估测器, 并使用非参数的估测器和样本分裂或交叉校准来测试假设。 我们称这个测试( 交叉适用) 本地差异性测试( ( ( X) LCT ) ), 我们显示它的水平和权力可以统一控制, 只要非参数的估测算器与适量率一致。 我们用一个基于边际 Cox 模型的模型来说明理论, 并用基于时间差异的对比, 我们用模拟模型来显示在不采用严格测试假设的情况下使用双机学习时, 进行模拟。</s>