A Hadamard matrix is balanced splittable if some subset of its rows has the property that the dot product of every two distinct columns takes at most two values. This definition was introduced by Kharaghani and Suda in 2019, although equivalent formulations have been previously studied using different terminology. We collate previous results phrased in terms of balanced splittable Hadamard matrices, real flat equiangular tight frames, spherical two-distance sets, and two-distance tight frames. We use combinatorial analysis to restrict the parameters of a balanced splittable Hadamard matrix to lie in one of several classes, and obtain strong new constraints on their mutual relationships. An important consideration in determining these classes is whether the strongly regular graph associated with the balanced splittable Hadamard matrix is primitive or imprimitive. We construct new infinite families of balanced splittable Hadamard matrices in both the primitive and imprimitive cases. A rich source of examples is provided by packings of partial difference sets in elementary abelian 2-groups, from which we construct Hadamard matrices admitting a row decomposition so that the balanced splittable property holds simultaneously with respect to every union of the submatrices of the decomposition.
翻译:如果哈达马德矩阵的某些子集拥有两条不同列的圆点产品在最多两个值中所具有的属性,则该矩阵是平衡的。 2019年Kharaghani和Suda采用了这一定义, 尽管以前曾使用不同的术语对等配方进行了研究。 我们用平衡的哈达马德矩阵、 真正的平面等宽线紧框架、 球形双距离套件 和两远紧框等来整理先前的成果。 我们使用组合分析来限制平衡的哈达马德矩阵的参数, 将其放在几个类别中的一个, 并获得对其相互关系的强烈新限制。 在确定这些类别时,一个重要的考虑因素是, 与平衡的哈达马德矩阵相关的强烈常规图表是原始的还是近距离的。 我们在原始和近距离的案例中构建了平衡的哈达马德矩阵的新的无限组合。 我们通过将部分差异组合包装在初级亚伯尔2组中提供丰富的实例来源, 我们从中构建了哈达马德矩阵的矩阵, 承认一个行的分位位置, 从而平衡的地段位置与每个子系的分。