A Hadamard matrix is balanced splittable if some subset of its rows has the property that the dot product of every two distinct columns takes at most two values. This definition was introduced by Kharaghani and Suda in 2019, although equivalent formulations have been previously studied using different terminology. We collate previous results phrased in terms of balanced splittable Hadamard matrices, real flat equiangular tight frames, spherical two-distance sets, and two-distance tight frames. We use combinatorial analysis to restrict the parameters of a balanced splittable Hadamard matrix to lie in one of several classes, and obtain strong new constraints on their mutual relationships. An important consideration in determining these classes is whether the strongly regular graph associated with the balanced splittable Hadamard matrix is primitive or imprimitive. We construct new infinite families of balanced splittable Hadamard matrices in both the primitive and imprimitive cases. A rich source of examples is provided by packings of partial difference sets in elementary abelian 2-groups, from which we construct Hadamard matrices admitting a row decomposition so that the balanced splittable property holds simultaneously with respect to every union of the submatrices of the decomposition.


翻译:如果哈达马德矩阵的某些子集拥有两条不同列的圆点产品在最多两个值中所具有的属性,则该矩阵是平衡的。 2019年Kharaghani和Suda采用了这一定义, 尽管以前曾使用不同的术语对等配方进行了研究。 我们用平衡的哈达马德矩阵、 真正的平面等宽线紧框架、 球形双距离套件 和两远紧框等来整理先前的成果。 我们使用组合分析来限制平衡的哈达马德矩阵的参数, 将其放在几个类别中的一个, 并获得对其相互关系的强烈新限制。 在确定这些类别时,一个重要的考虑因素是, 与平衡的哈达马德矩阵相关的强烈常规图表是原始的还是近距离的。 我们在原始和近距离的案例中构建了平衡的哈达马德矩阵的新的无限组合。 我们通过将部分差异组合包装在初级亚伯尔2组中提供丰富的实例来源, 我们从中构建了哈达马德矩阵的矩阵, 承认一个行的分位位置, 从而平衡的地段位置与每个子系的分。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月23日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员