Sequential recommendation methods play a crucial role in modern recommender systems because of their ability to capture a user's dynamic interest from her/his historical interactions. Despite their success, we argue that these approaches usually rely on the sequential prediction task to optimize the huge amounts of parameters. They usually suffer from the data sparsity problem, which makes it difficult for them to learn high-quality user representations. To tackle that, inspired by recent advances of contrastive learning techniques in the computer version, we propose a novel multi-task model called \textbf{C}ontrastive \textbf{L}earning for \textbf{S}equential \textbf{Rec}ommendation~(\textbf{CL4SRec}). CL4SRec not only takes advantage of the traditional next item prediction task but also utilizes the contrastive learning framework to derive self-supervision signals from the original user behavior sequences. Therefore, it can extract more meaningful user patterns and further encode the user representation effectively. In addition, we propose three data augmentation approaches to construct self-supervision signals. Extensive experiments on four public datasets demonstrate that CL4SRec achieves state-of-the-art performance over existing baselines by inferring better user representations.
翻译:序列建议方法在现代推荐人系统中发挥着关键作用, 因为它们能够捕捉用户对其历史互动的动态兴趣。 尽管这些方法取得了成功, 我们辩称, 这些方法通常依靠顺序预测任务来优化大量参数。 它们通常受到数据宽度问题的影响, 这使得它们难以学习高质量的用户表示。 为了在计算机版本的对比式学习技术的最新进展的启发下解决这个问题, 我们提议了一个新型的多任务模式, 名为\ textbf{C} comtratsk {L} 学习\ textbf{S} 序列\ textbf{Rec} 。 此外, 我们提议了三种数据扩增方法, 以构建比现有用户行为序列更精确的自我监督用户表现, 不仅利用传统的下一个项目预测任务, 还利用对比式学习框架, 从原始用户行为序列中获取自我超强的图像信号。 因此, 它可以提取更有意义的用户模式, 并有效地编码用户代表。 此外, 我们提议了三种数据扩缩方法, 以构建更精确的自我监督用户显示现有基线。