随着推荐任务的日益多样化和推荐模型的日益复杂,开发出一套能够很好地适应新的推荐任务的推荐系统变得越来越具有挑战性。在本教程中,我们将重点讨论自动机器学习(AutoML)技术如何有益于推荐系统的设计和使用。具体地说,我们将从一个完整的范围开始描述什么是可以自动推荐系统。然后,我们将在此范围内对特征工程、超参数优化/神经结构搜索和算法选择三个重要的主题进行详细阐述。将介绍、总结和讨论这些主题下的核心问题和最近的工作。