We propose a family of mixed finite elements that are robust for the nearly incompressible strain gradient model, which is a fourth-order singular perturbed elliptic system. The element is similar to [C. Taylor and P. Hood, Comput. & Fluids, 1(1973), 73-100] in the Stokes flow. Using a uniform discrete B-B inequality for the mixed finite element pairs, we show the optimal rate of convergence that is robust in the incompressible limit. By a new regularity result that is uniform in both the materials parameter and the incompressibility, we prove the method converges with $1/2$ order to the solution with strong boundary layer effects. Moreover, we estimate the convergence rate of the numerical solution to the unperturbed second-order elliptic system. Numerical results for both smooth solutions and the solutions with sharp layers confirm the theoretical prediction.
翻译:我们提出一组混合的有限要素,这些元素对于几乎可以压缩的菌株梯度模型是坚固的,这是第四级单倍的超扰动椭圆形系统,该元素与斯托克斯流中的[C. Taylor和P. Hood,Compuut. & Fluids, 1(1973), 73-100]类似。我们用一个统一的离散B-B-B不平等的组合,对混合的有限元素配对来说,我们展示了最佳的趋同率,这在压抑性极限中是稳健的。通过一个新的规律性结果,即材料参数和压抑性都一致,我们证明该方法与1/2美元相匹配,以具有强烈边界层效应的解决方案相匹配。此外,我们估计了无扰动的二等椭圆形系统的数字解决方案的趋同率。光度解决方案和清晰层解决方案的数值结果证实了理论预测。