We present and analyze a multiscale method for wave propagation problems, posed on spatial networks. By introducing a coarse scale, using a finite element space interpolated onto the network, we construct a discrete multiscale space using the localized orthogonal decomposition (LOD) methodology. The spatial discretization is then combined with an energy conserving temporal scheme to form the proposed method. Under the assumption of well-prepared initial data, we derive an a priori error bound of optimal order with respect to the space and time discretization. In the analysis, we combine the theory derived for stationary elliptic problems on spatial networks with classical finite element results for hyperbolic problems. Finally, we present numerical experiments that confirm our theoretical findings.
翻译:我们提出并分析在空间网络上形成的波波传播问题多尺度方法。我们采用一个粗略的尺度,利用将空间的有限元素内插到网络中,利用局部正方形分解(LOD)方法建造了一个离散的多尺度空间。然后,空间分解与一个节能时间计划相结合,形成拟议方法。根据精心准备的初步数据的假设,我们得出一个先验错误,在空间和时间分解方面,符合最佳秩序。在分析中,我们把空间网络的固定性椭圆问题理论与典型的超单体问题典型的有限元素结果结合起来。最后,我们提出数字实验,以证实我们的理论结论。</s>