We consider the problem of minimizing a non-convex function over a smooth manifold $\mathcal{M}$. We propose a novel algorithm, the Orthogonal Directions Constrained Gradient Method (ODCGM) which only requires computing a projection onto a vector space. ODCGM is infeasible but the iterates are constantly pulled towards the manifold, ensuring the convergence of ODCGM towards $\mathcal{M}$. ODCGM is much simpler to implement than the classical methods which require the computation of a retraction. Moreover, we show that ODCGM exhibits the near-optimal oracle complexities $\mathcal{O}(1/\varepsilon^2)$ and $\mathcal{O}(1/\varepsilon^4)$ in the deterministic and stochastic cases, respectively. Furthermore, we establish that, under an appropriate choice of the projection metric, our method recovers the landing algorithm of Ablin and Peyr\'e (2022), a recently introduced algorithm for optimization over the Stiefel manifold. As a result, we significantly extend the analysis of Ablin and Peyr\'e (2022), establishing near-optimal rates both in deterministic and stochastic frameworks. Finally, we perform numerical experiments which shows the efficiency of ODCGM in a high-dimensional setting.


翻译:我们考虑的是将非碳化函数在平滑的元元中最小化的问题。 我们提出一种新型算法, 即Orthogoal Directors Contratracted Gradient 方法( ODCGM ), 它只需要计算向矢量空间的投影。 ODCGM 是不可行的, 但是循环体会不断地拉向这个方块, 确保 ODCGM 与 $\ mathcal{M} 。 ODCGM 的实施比 需要计算回调的经典方法( 2022) 更简单得多。 此外, 我们显示 ODCGM 展示了近最佳或最精密的方块复杂性 $( 1/ varepsilon) $ 和 $\ mathcal{O} ( 1/\ varepslon% 4) 。 在确定性和随机分析中, 我们确定, 在适当选择的预测度指标下, 我们的方法可以恢复Ablin 和 Peyr\ e e( 20), 最近引入的对Stiefelfel complace- complia 进行优化的调校正的计算法分析, 我们最后在确定了一个高度框架。</s>

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员