Media sharing applications, such as Flickr and Panoramio, contain a large amount of pictures related to real life events. For this reason, the development of effective methods to retrieve these pictures is important, but still a challenging task. Recognizing this importance, and to improve the retrieval effectiveness of tag-based event retrieval systems, we propose a new method to extract a set of geographical tag features from raw geo-spatial profiles of user tags. The main idea is to use these features to select the best expansion terms in a machine learning-based query expansion approach. Specifically, we apply rigorous statistical exploratory analysis of spatial point patterns to extract the geo-spatial features. We use the features both to summarize the spatial characteristics of the spatial distribution of a single term, and to determine the similarity between the spatial profiles of two terms -- i.e., term-to-term spatial similarity. To further improve our approach, we investigate the effect of combining our geo-spatial features with temporal features on choosing the expansion terms. To evaluate our method, we perform several experiments, including well-known feature analyses. Such analyses show how much our proposed geo-spatial features contribute to improve the overall retrieval performance. The results from our experiments demonstrate the effectiveness and viability of our method.
翻译:诸如Flickr和Panoramio等媒体共享应用程序包含大量与真实生活事件有关的图片。 因此,开发有效方法检索这些图片是重要的,但仍然是一项具有挑战性的任务。 我们认识到这一点的重要性,并提高基于标签的事件检索系统的检索效力,因此,我们建议采用新方法,从原始用户标签地理空间分布图中提取一套地理标签特征。主要想法是利用这些特征选择机器学习查询扩展方法中的最佳扩展术语。具体地说,我们对空间点模式进行严格的统计探索性分析,以提取地理空间空间空间空间空间空间特征。我们使用这些特征来总结单一术语空间分布的空间特征,并确定两个术语的空间特征之间的相似性 -- -- 即术语对时间空间的相似性。为了进一步改进我们的方法,我们调查将我们的地理空间特征与时间特征结合对选择扩展术语的影响。为了评估我们的方法,我们进行了若干项实验,包括著名地貌分析。这些分析显示了我们提议的地球空间空间空间特征对改进总体性能的贡献。