Media sharing applications, such as Flickr and Panoramio, contain a large amount of pictures related to real life events. For this reason, the development of effective methods to retrieve these pictures is important, but still a challenging task. Recognizing this importance, and to improve the retrieval effectiveness of tag-based event retrieval systems, we propose a new method to extract a set of geographical tag features from raw geo-spatial profiles of user tags. The main idea is to use these features to select the best expansion terms in a machine learning-based query expansion approach. Specifically, we apply rigorous statistical exploratory analysis of spatial point patterns to extract the geo-spatial features. We use the features both to summarize the spatial characteristics of the spatial distribution of a single term, and to determine the similarity between the spatial profiles of two terms -- i.e., term-to-term spatial similarity. To further improve our approach, we investigate the effect of combining our geo-spatial features with temporal features on choosing the expansion terms. To evaluate our method, we perform several experiments, including well-known feature analyses. Such analyses show how much our proposed geo-spatial features contribute to improve the overall retrieval performance. The results from our experiments demonstrate the effectiveness and viability of our method.


翻译:诸如Flickr和Panoramio等媒体共享应用程序包含大量与真实生活事件有关的图片。 因此,开发有效方法检索这些图片是重要的,但仍然是一项具有挑战性的任务。 我们认识到这一点的重要性,并提高基于标签的事件检索系统的检索效力,因此,我们建议采用新方法,从原始用户标签地理空间分布图中提取一套地理标签特征。主要想法是利用这些特征选择机器学习查询扩展方法中的最佳扩展术语。具体地说,我们对空间点模式进行严格的统计探索性分析,以提取地理空间空间空间空间空间空间特征。我们使用这些特征来总结单一术语空间分布的空间特征,并确定两个术语的空间特征之间的相似性 -- -- 即术语对时间空间的相似性。为了进一步改进我们的方法,我们调查将我们的地理空间特征与时间特征结合对选择扩展术语的影响。为了评估我们的方法,我们进行了若干项实验,包括著名地貌分析。这些分析显示了我们提议的地球空间空间空间特征对改进总体性能的贡献。

0
下载
关闭预览

相关内容

从20世纪70年代开始,有关图像检索的研究就已开始,当时主要是基于文本的图像检索技术(Text-based Image Retrieval,简称TBIR),利用文本描述的方式描述图像的特征,如绘画作品的作者、年代、流派、尺寸等。到90年代以后,出现了对图像的内容语义,如图像的颜色、纹理、布局等进行分析和检索的图像检索技术,即基于内容的图像检索(Content-based Image Retrieval,简称CBIR)技术。CBIR属于基于内容检索(Content-based Retrieval,简称CBR)的一种,CBR中还包括对动态视频、音频等其它形式多媒体信息的检索技术。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
4+阅读 · 2018年11月7日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2012年11月20日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员