We consider the homogeneous Dirichlet problem for the integral fractional Laplacian $(-\Delta)^s$. We prove optimal Sobolev regularity estimates in Lipschitz domains provided the solution is $C^s$ up to the boundary. We present the construction of graded bisection meshes by a greedy algorithm and derive quasi-optimal convergence rates for approximations to the solution of such a problem by continuous piecewise linear functions. The nonlinear Sobolev scale dictates the relation between regularity and approximability.
翻译:我们考虑的是分数拉普拉西亚元(-\ Delta) 的同质 Dirichlet 问题。 在利普施茨域中,我们证明索博莱夫的常规性估计是最佳的,只要解决方案在边界之前是 $C $s 。 我们用贪婪的算法构建了分级的分节 meshes, 并得出近似最佳的近似趋同率, 通过连续的小片线性函数来解决这个问题。 非线性索博莱夫比例决定了规律性和近似性之间的关系 。