This article presents a general approximation-theoretic framework to analyze measure-transport algorithms for sampling and characterizing probability measures. Sampling is a task that frequently arises in data science and uncertainty quantification. We provide error estimates in the continuum limit, i.e., when the measures (or their densities) are given, but when the transport map is discretized or approximated using a finite-dimensional function space. Our analysis relies on the regularity theory of transport maps, as well as on classical approximation theory for high-dimensional functions. A third element of our analysis, which is of independent interest, is the development of new stability estimates that relate the normed distance between two maps to the divergence between the pushforward measures they define. We further present a series of applications where quantitative convergence rates are obtained for practical problems using Wasserstein metrics, maximum mean discrepancy, and Kullback-Leibler divergence. Specialized rates for approximations of the popular triangular Kn{\"o}the-Rosenblatt maps are obtained, followed by numerical experiments that demonstrate and extend our theory.
翻译:本文提供了一个用于分析取样和定性概率计量的计量-运输算法的一般近似理论框架。 取样是数据科学和不确定性量化中经常出现的一项任务。 我们在连续限制中提供误差估计, 即当测量( 或其密度) 给出时, 但当运输地图使用一个有限维功能空间进行离散或近似时。 我们的分析依赖于运输地图的规律理论, 以及高维函数的经典近似理论。 我们分析的第三个要素是独立感兴趣的新的稳定性估计, 将两张地图之间的标准距离与其界定的向前推进测量之间的差异联系起来。 我们还提出一系列应用, 使用瓦西尔斯坦指标、 最大平均值差异和 Kullback- Leiber 差异等实际问题获得量化趋同率。 获得了流行三角三角形 Kn'' o} 和罗森布拉特地图的精确近似率, 并随后进行数字实验, 以显示并扩展我们的理论。</s>