Mean-field games (MFG) were introduced to efficiently analyze approximate Nash equilibria in large population settings. In this work, we consider entropy-regularized mean-field games with a finite state-action space in a discrete time setting. We show that entropy regularization provides the necessary regularity conditions, that are lacking in the standard finite mean field games. Such regularity conditions enable us to design fixed-point iteration algorithms to find the unique mean-field equilibrium (MFE). Furthermore, the reference policy used in the regularization provides an extra parameter, through which one can control the behavior of the population. We first consider a stochastic game with a large population of $N$ homogeneous agents. We establish conditions for the existence of a Nash equilibrium in the limiting case as $N$ tends to infinity, and we demonstrate that the Nash equilibrium for the infinite population case is also an $\epsilon$-Nash equilibrium for the $N$-agent system, where the sub-optimality $\epsilon$ is of order $\mathcal{O}\big(1/\sqrt{N}\big)$. Finally, we verify the theoretical guarantees through a resource allocation example and demonstrate the efficacy of using a reference policy to control the behavior of a large population.
翻译:引入了普通场游戏(MFG)来有效分析大型人口环境中的近似纳什平均平衡。 在这项工作中, 我们考虑在离散的时间设置中, 使用有限的州行动空间, 使用有限的州行动空间, 使用不固定的普通游戏(MFG) 。 这种常规性条件使我们能够设计固定点重复算法, 以找到独特的平均平衡(MFE) 。 此外, 正规化中使用的参考政策提供了一个额外的参数, 可以通过该参数控制人口的行为。 我们首先考虑使用大量人口以美元为单位的纯平均平均游戏。 我们设定了在限制情况下存在纳什平衡的条件, 原因是美元倾向于不固定的平均场游戏。 我们证明, 无限人口案例中的纳什平衡也是一种 $\ epslon- Nash 平衡, 在这种系统中, 亚优度 $\epslonon 提供了一种按 $\ mathcal {O_Big(1/\\\\\\\ sqrqrqrg) a provical ass a proview press proview practation practation practation press express a proview press a proviolence a express express express a proviollence a progleg) a progal s polence s polence.