We formulate an ergodic theory for the (almost sure) limit $\mathcal{P}^\text{co}_{\tilde{\mathcal{E}}}$ of a sequence $(\mathcal{P}^\text{co}_{\mathcal{E}_n})$ of successive dynamic imprecise probability kinematics (DIPK, introduced in Caprio and Gong, 2021) updates of a set $\mathcal{P}^\text{co}_{\mathcal{E}_0}$ representing the initial beliefs of an agent. As a consequence, we formulate a strong law of large numbers.
翻译:我们为(几乎可以肯定的) 限制$(mathcal{P ⁇ text{co ⁇ ttle{co ⁇ tilde_mathcal{E}}) 以连续动态不精确概率运动学(DIPK, 引入于卡普里奥 和 孔, 2021) 的序列$(mathcal{P ⁇ text{co ⁇ coffice{E ⁇ 0}) 的序列$(mathcal{P ⁇ text{co ⁇ tilde_mathcal{E ⁇ } $) 来设定一个ERgodic理论, 来限制$(mathcal{P ⁇ t{col{co}co ⁇ pilde_mathcal{E ⁇ n} $ 。 因此, 我们制定了大量有力的法律 。