The classical development of neural networks has primarily focused on learning mappings between finite dimensional Euclidean spaces or finite sets. We propose a generalization of neural networks tailored to learn operators mapping between infinite dimensional function spaces. We formulate the approximation of operators by composition of a class of linear integral operators and nonlinear activation functions, so that the composed operator can approximate complex nonlinear operators. Furthermore, we introduce four classes of operator parameterizations: graph-based operators, low-rank operators, multipole graph-based operators, and Fourier operators and describe efficient algorithms for computing with each one. The proposed neural operators are resolution-invariant: they share the same network parameters between different discretizations of the underlying function spaces and can be used for zero-shot super-resolutions. Numerically, the proposed models show superior performance compared to existing machine learning based methodologies on Burgers' equation, Darcy flow, and the Navier-Stokes equation, while being several order of magnitude faster compared to conventional PDE solvers.
翻译:神经网络的典型发展主要侧重于学习有限维度欧几里得空间或有限数据集之间的测图。 我们建议对神经网络进行一般化,专门为学习操作者绘制无限维功能空间之间的测图。 我们通过一组线性整体操作者和非线性激活功能来制定操作者近似,这样组成操作者可以大致地使用复杂的非线性操作者。 此外,我们引入了四类操作者参数:基于图解的操作者、低级操作者、多极图基操作者以及Fourier操作者,并描述每种计算的有效算法。 拟议的神经操作者是分辨率异性:它们在基础功能空间的不同离散状态之间共享相同的网络参数,可用于零光超分辨率。 从数字上看,拟议模型显示的性能优于基于Burgers方程式、 Darcy 流和 Navier- Stokes 方程式的现有机器学习方法,而与传统的PDE解算器相比,数量级数级更快。