In this paper we provide new randomized algorithms with improved runtimes for solving linear programs with two-sided constraints. In the special case of the minimum cost flow problem on $n$-vertex $m$-edge graphs with integer polynomially-bounded costs and capacities we obtain a randomized method which solves the problem in $\tilde{O}(m+n^{1.5})$ time. This improves upon the previous best runtime of $\tilde{O}(m\sqrt{n})$ (Lee-Sidford 2014) and, in the special case of unit-capacity maximum flow, improves upon the previous best runtimes of $m^{4/3+o(1)}$ (Liu-Sidford 2020, Kathuria 2020) and $\tilde{O}(m\sqrt{n})$ (Lee-Sidford 2014) for sufficiently dense graphs. For $\ell_1$-regression in a matrix with $n$-columns and $m$-rows we obtain a randomized method which computes an $\epsilon$-approximate solution in $\tilde{O}(mn+n^{2.5})$ time. This yields a randomized method which computes an $\epsilon$-optimal policy of a discounted Markov Decision Process with $S$ states and $A$ actions per state in time $\tilde{O}(S^2A+S^{2.5})$. These methods improve upon the previous best runtimes of methods which depend polylogarithmically on problem parameters, which were $\tilde{O}(mn^{1.5})$ (Lee-Sidford 2015) and $\tilde{O}(S^{2.5}A)$ (Lee-Sidford 2014, Sidford-Wang-Wu-Ye 2018). To obtain this result we introduce two new algorithmic tools of independent interest. First, we design a new general interior point method for solving linear programs with two sided constraints which combines techniques from (Lee-Song-Zhang 2019, Brand et al. 2020) to obtain a robust stochastic method with iteration count nearly the square root of the smaller dimension. Second, to implement this method we provide dynamic data structures for efficiently maintaining approximations to variants of Lewis-weights, a fundamental importance measure for matrices which generalize leverage scores and effective resistances.


翻译:在本文中, 我们提供新的随机算法, 改进运行时间, 以双向限制解决线性程序 。 在美元- 顶价美元- 美元- 顶价美元- 顶价图表上的最低成本流量问题的特殊例子中, 我们获得了一个随机化方法, 解决 $tilde{ (m+n ⁇ 1.5} 美元/ 美元) 的问题。 这比上次最高级运行时间 $\ tilde{ (m\\ sqrt{ O} (m\ sqrt{ } 美元) 更好。 在美元- 西德福尔德的参数上, 美元- 最低成本- 美元最大流量的最小成本流动问题。 在美元- 单位能力最大流动的特殊例子中, 之前的最佳运行时间 $m@4/3+ 美元( Kathuria 2020) 和 美元- 美元- complidforderal 的计算方法。 以美元- 美元- 美元- 美元- 美元- 快速化的计算方法, 我们用此方法来改进了 美元- 美元- 快速化的流程的流程 方法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
220+阅读 · 2020年6月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员