This work studies constrained stochastic optimization problems where the objective and constraint functions are convex and expressed as compositions of stochastic functions. The problem arises in the context of fair classification, fair regression, and the design of queuing systems. Of particular interest is the large-scale setting where an oracle provides the stochastic gradients of the constituent functions, and the goal is to solve the problem with a minimal number of calls to the oracle. Owing to the compositional form, the stochastic gradients provided by the oracle do not yield unbiased estimates of the objective or constraint gradients. Instead, we construct approximate gradients by tracking the inner function evaluations, resulting in a quasi-gradient saddle point algorithm. We prove that the proposed algorithm is guaranteed to find the optimal and feasible solution almost surely. We further establish that the proposed algorithm requires $\mathcal{O}(1/\epsilon^4)$ data samples in order to obtain an $\epsilon$-approximate optimal point while also ensuring zero constraint violation. The result matches the sample complexity of the stochastic compositional gradient descent method for unconstrained problems and improves upon the best-known sample complexity results for the constrained settings. The efficacy of the proposed algorithm is tested on both fair classification and fair regression problems. The numerical results show that the proposed algorithm outperforms the state-of-the-art algorithms in terms of the convergence rate.
翻译:这项工作限制了在目标和制约功能为混凝土且以约束性功能构成的形式表示的目标和制约性优化问题。 问题出在公平分类、公平回归和排队系统设计方面。 特别令人感兴趣的是,一个神器提供组成函数的随机梯度的大规模设置, 目标是以最小数量的呼唤来解决问题。 由于组成形式, 由神器提供的随机梯度不会产生对目标或约束性梯度的公正估计。 相反, 我们通过跟踪内部功能评价来构造大约梯度, 从而形成准梯度的坐垫算法。 我们证明, 提议的算法几乎可以肯定地找到最佳和可行的解决办法。 我们进一步确定, 拟议的算法需要$mathcal{O}(1/\\\ epsilon% 4) 来最小调用数据样本来解决这个问题。 由于组成形式, 由神器提供的随机梯度梯度梯度梯度比, 并且确保零约束性违反。 结果与内部功能评价的样本复杂性相符, 导致准性构成性定值的定值定序结果, 公平性定式定值的定值后定型结果显示公平性定值的定值结果, 改进了公平的定值的定值的定序结果, 改进。 改进了公平性定值的定值的定值的精确性结果,, 改进了公平性定值的定值的定值的精确性结果, 改进了公平性结果的定的定后定的定的定的定结果, 改进后定结果是不稳性结果,, 改进了。