Although model-based reinforcement learning (RL) approaches are considered more sample efficient, existing algorithms are usually relying on sophisticated planning algorithm to couple tightly with the model-learning procedure. Hence the learned models may lack the ability of being re-used with more specialized planners. In this paper we address this issue and provide approaches to learn an RL model efficiently without the guidance of a reward signal. In particular, we take a plug-in solver approach, where we focus on learning a model in the exploration phase and demand that \emph{any planning algorithm} on the learned model can give a near-optimal policy. Specicially, we focus on the linear mixture MDP setting, where the probability transition matrix is a (unknown) convex combination of a set of existing models. We show that, by establishing a novel exploration algorithm, the plug-in approach learns a model by taking $\tilde{O}(d^2H^3/\epsilon^2)$ interactions with the environment and \emph{any} $\epsilon$-optimal planner on the model gives an $O(\epsilon)$-optimal policy on the original model. This sample complexity matches lower bounds for non-plug-in approaches and is \emph{statistically optimal}. We achieve this result by leveraging a careful maximum total-variance bound using Bernstein inequality and properties specified to linear mixture MDP.


翻译:虽然基于模型的强化学习(RL)方法被认为更有效率,但现有的算法通常依赖复杂的规划算法,与模型学习程序紧密结合。因此,学习的模型可能缺乏与更专业化的规划者重新使用的能力。在本文件中,我们处理这一问题,并提供在没有奖赏信号的指导下有效学习RL模型的方法。特别是,我们采取插接解算法,我们侧重于在探索阶段学习模型,并要求在所学模型上采用\emph{任何规划算法}能够提供接近最佳的政策。我们注重线性混合 MDP 设置,其中概率转换矩阵是一套现有模型的(未知的)组合组合。我们表明,通过建立新的探索算法,插接通方法学习模型,我们采用 $\ text{O}(d2H%3/\epsilon%2) 来学习一个模型,同时要求与环境和\emph{ny{any} (eqourlon-op$-optimener plan) 能够产生一个(未知的)原始的(O\ep) comestimalimalimal imal assimal 方法。我们用这个原始的、不拘谨的模型来取得一个最精度的精细的模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
IJCAI 2020丨近期必读七篇【深度强化学习】论文
学术头条
4+阅读 · 2020年9月28日
顶会论文 || 65篇"IJCAI"深度强化学习论文汇总
深度强化学习实验室
3+阅读 · 2020年3月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月9日
Arxiv
0+阅读 · 2021年12月9日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
IJCAI 2020丨近期必读七篇【深度强化学习】论文
学术头条
4+阅读 · 2020年9月28日
顶会论文 || 65篇"IJCAI"深度强化学习论文汇总
深度强化学习实验室
3+阅读 · 2020年3月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员