We study the relationship between the Quantum Approximate Optimization Algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum symmetry properties of the QAOA dynamics and the group of classical symmetries of the objective function. The connection is general and includes but is not limited to problems defined on graphs. We show a series of results exploring the connection and highlight examples of hard problem classes where a nontrivial symmetry subgroup can be obtained efficiently. In particular we show how classical objective function symmetries lead to invariant measurement outcome probabilities across states connected by such symmetries, independent of the choice of algorithm parameters or number of layers. To illustrate the power of the developed connection, we apply machine learning techniques towards predicting QAOA performance based on symmetry considerations. We provide numerical evidence that a small set of graph symmetry properties suffices to predict the minimum QAOA depth required to achieve a target approximation ratio on the MaxCut problem, in a practically important setting where QAOA parameter schedules are constrained to be linear and hence easier to optimize.
翻译:我们研究了Qantum Apbortimization Aprostimization Alogorithm (QAOA) 和要优化的目标函数基本对称性(QAOA) 之间的关系。 我们的方法将QAOA动态的量度对称性与目标函数的经典对称性组群之间的关系正式化。 连接是一般性的, 包括但不限于图表上界定的问题。 我们展示了一系列探索连接的结果, 并突出一些硬问题类的例子, 在那里可以有效地获得非三角对称分组。 特别是, 我们展示了传统目标函数对称性导致通过这种对称性( QAOA) 、 独立于算法参数或层数选择的量对称性等性能, 使各州间差异性测量结果的不易变性。 为了说明发达连接的力量, 我们运用机器学习技术, 根据对称性考虑来预测QAA的性能。 我们提供了数字证据, 小组的图形对称性能足以预测最小的 QAAA 深度, 也就是实现目标对准性A 的精确度比例比的精确度比, 从而对准性测测测测测测测测算为最大的精确度比。