In this paper, for POMDPs, we provide the convergence of a Q learning algorithm for control policies using a finite history of past observations and control actions, and, consequentially, we establish near optimality of such limit Q functions under explicit filter stability conditions. We present explicit error bounds relating the approximation error to the length of the finite history window. We establish the convergence of such Q-learning iterations under mild ergodicity assumptions on the state process during the exploration phase. We further show that the limit fixed point equation gives an optimal solution for an approximate belief-MDP. We then provide bounds on the performance of the policy obtained using the limit Q values compared to the performance of the optimal policy for the POMDP, where we also present explicit conditions using recent results on filter stability in controlled POMDPs. While there exist many experimental results, (i) the rigorous asymptotic convergence (to an approximate MDP value function) for such finite-memory Q-learning algorithms, and (ii) the near optimality with an explicit rate of convergence (in the memory size) are results that are new to the literature, to our knowledge.


翻译:在本文中,对于POMDPs,我们利用过去观测和控制行动的有限历史,为控制政策提供了Q学习算法的趋同,因此,我们在明确的过滤稳定条件下建立了这种限制Q功能的近似最佳性能。我们提出了将近似差错与有限历史窗口的长度相联系的明确错误界限。我们根据在勘探阶段国家进程的轻度异端假设建立了这种Q学习迭代的趋同。我们进一步表明,定点方程式为大约的信仰-MDP提供了最佳解决办法。然后,我们提供了使用限制Q值获得的政策绩效与POMDP最佳政策绩效的界限,我们在该范围内还利用受控制的POMDPs中过滤稳定性的最新结果提出了明确条件。虽然有许多实验结果,但(一) 对这种有限的模拟Q-学习算法的严格性归结(大致为MDP值函数),以及(二) 与明确的趋同率(记忆大小)的接近最佳性能是我们文献的新结果。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
16+阅读 · 2020年12月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月10日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员