Recently, large models, such as Vision Transformer and BERT, have garnered significant attention due to their exceptional performance. However, their extensive computational requirements lead to considerable power and hardware resource consumption. Brain-inspired computing, characterized by its spike-driven methods, has emerged as a promising approach for low-power hardware implementation. In this paper, we propose an efficient sparse hardware accelerator for Spike-driven Transformer. We first design a novel encoding method that encodes the position information of valid activations and skips non-spike values. This method enables us to use encoded spikes for executing the calculations of linear, maxpooling and spike-driven self-attention. Compared with the single spike input design of conventional SNN accelerators that primarily focus on convolution-based spiking computations, the specialized module for spike-driven self-attention is unique in its ability to handle dual spike inputs. By exclusively utilizing activated spikes, our design fully exploits the sparsity of Spike-driven Transformer, which diminishes redundant operations, lowers power consumption, and minimizes computational latency. Experimental results indicate that compared to existing SNNs accelerators, our design achieves up to 13.24$\times$ and 1.33$\times$ improvements in terms of throughput and energy efficiency, respectively.
翻译:暂无翻译