Variational Bayesian phylogenetic inference (VBPI) provides a promising general variational framework for efficient estimation of phylogenetic posteriors. However, the current diagonal Lognormal branch length approximation would significantly restrict the quality of the approximating distributions. In this paper, we propose a new type of VBPI, VBPI-NF, as a first step to empower phylogenetic posterior estimation with deep learning techniques. By handling the non-Euclidean branch length space of phylogenetic models with carefully designed permutation equivariant transformations, VBPI-NF uses normalizing flows to provide a rich family of flexible branch length distributions that generalize across different tree topologies. We show that VBPI-NF significantly improves upon the vanilla VBPI on a benchmark of challenging real data Bayesian phylogenetic inference problems. Further investigation also reveals that the structured parameterization in those permutation equivariant transformations can provide additional amortization benefit.
翻译:在本文中,我们提出了一种新型的VBPI,VBPI-NF,作为以深层学习技术增强对植物遗传后生生物的估算能力的第一步。通过处理精心设计的非Euclide的植物遗传模型分支空间,并经过精心设计的变异等异变变换,VBPI-NF利用正常化流程,提供丰富多彩的灵活分支分布分布,跨越不同的树层分布。我们表明,VBPI-NF在具有挑战性的实际数据Bayesian植物遗传推断问题的基准上,对VVBPI-NF有很大的改进。进一步的调查还表明,这些变异变变变的结构性参数化可以带来额外的摊销效益。