Numerical integration and emulation are fundamental topics across scientific fields. We propose novel adaptive quadrature schemes based on an active learning procedure. We consider an interpolative approach for building a surrogate posterior density, combining it with Monte Carlo sampling methods and other quadrature rules. The nodes of the quadrature are sequentially chosen by maximizing a suitable acquisition function, which takes into account the current approximation of the posterior and the positions of the nodes. This maximization does not require additional evaluations of the true posterior. We introduce two specific schemes based on Gaussian and Nearest Neighbors (NN) bases. For the Gaussian case, we also provide a novel procedure for fitting the bandwidth parameter, in order to build a suitable emulator of a density function. With both techniques, we always obtain a positive estimation of the marginal likelihood (a.k.a., Bayesian evidence). An equivalent importance sampling interpretation is also described, which allows the design of extended schemes. Several theoretical results are provided and discussed. Numerical results show the advantage of the proposed approach, including a challenging inference problem in an astronomic dynamical model, with the goal of revealing the number of planets orbiting a star.


翻译:数字整合和模拟是各科学领域的基本主题。我们提出基于积极学习程序的新型适应性二次方案;我们考虑建立代位后方密度的中间方法,将其与蒙特卡洛取样方法和其他二次规则相结合。二次的节点是依次选择的,方法是最大限度地增加适当的获取功能,考虑到后方当前近似值和节点位置。这种最大化不需要对真正的后方进行额外评估。我们根据高山和近邻(NNN)基地推出两个具体计划。对于高山和近邻(NN)基地,我们提出了两种具体的计划。对于高山和近邻(NN)基地,我们还提供了一种安装带宽参数的新程序,以便建立一个适当的密度功能模拟器。用这两种技术,我们总是能够对边际可能性(a.k.a.a.)和节点的位置作出积极估计。还描述了同等重要性的抽样解释,从而可以设计扩展的后方计划。我们提供了一些理论结果并进行了讨论。对于高山和近邻(NNN)基础,对于高山(Gaussian)来说,我们还提供了一个新的程序,以匹配结果显示拟议方法的优势,包括振动的轨道,以恒星号为目标为目标问题。

0
下载
关闭预览

相关内容

主动学习是机器学习(更普遍的说是人工智能)的一个子领域,在统计学领域也叫查询学习、最优实验设计。“学习模块”和“选择策略”是主动学习算法的2个基本且重要的模块。 主动学习是“一种学习方法,在这种方法中,学生会主动或体验性地参与学习过程,并且根据学生的参与程度,有不同程度的主动学习。” (Bonwell&Eison 1991)Bonwell&Eison(1991) 指出:“学生除了被动地听课以外,还从事其他活动。” 在高等教育研究协会(ASHE)的一份报告中,作者讨论了各种促进主动学习的方法。他们引用了一些文献,这些文献表明学生不仅要做听,还必须做更多的事情才能学习。他们必须阅读,写作,讨论并参与解决问题。此过程涉及三个学习领域,即知识,技能和态度(KSA)。这种学习行为分类法可以被认为是“学习过程的目标”。特别是,学生必须从事诸如分析,综合和评估之类的高级思维任务。
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
0+阅读 · 2021年3月11日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员