Numerical integration and emulation are fundamental topics across scientific fields. We propose novel adaptive quadrature schemes based on an active learning procedure. We consider an interpolative approach for building a surrogate posterior density, combining it with Monte Carlo sampling methods and other quadrature rules. The nodes of the quadrature are sequentially chosen by maximizing a suitable acquisition function, which takes into account the current approximation of the posterior and the positions of the nodes. This maximization does not require additional evaluations of the true posterior. We introduce two specific schemes based on Gaussian and Nearest Neighbors (NN) bases. For the Gaussian case, we also provide a novel procedure for fitting the bandwidth parameter, in order to build a suitable emulator of a density function. With both techniques, we always obtain a positive estimation of the marginal likelihood (a.k.a., Bayesian evidence). An equivalent importance sampling interpretation is also described, which allows the design of extended schemes. Several theoretical results are provided and discussed. Numerical results show the advantage of the proposed approach, including a challenging inference problem in an astronomic dynamical model, with the goal of revealing the number of planets orbiting a star.
翻译:数字整合和模拟是各科学领域的基本主题。我们提出基于积极学习程序的新型适应性二次方案;我们考虑建立代位后方密度的中间方法,将其与蒙特卡洛取样方法和其他二次规则相结合。二次的节点是依次选择的,方法是最大限度地增加适当的获取功能,考虑到后方当前近似值和节点位置。这种最大化不需要对真正的后方进行额外评估。我们根据高山和近邻(NNN)基地推出两个具体计划。对于高山和近邻(NN)基地,我们提出了两种具体的计划。对于高山和近邻(NN)基地,我们还提供了一种安装带宽参数的新程序,以便建立一个适当的密度功能模拟器。用这两种技术,我们总是能够对边际可能性(a.k.a.a.)和节点的位置作出积极估计。还描述了同等重要性的抽样解释,从而可以设计扩展的后方计划。我们提供了一些理论结果并进行了讨论。对于高山和近邻(NNN)基础,对于高山(Gaussian)来说,我们还提供了一个新的程序,以匹配结果显示拟议方法的优势,包括振动的轨道,以恒星号为目标为目标问题。