Despite the recent development of methods dealing with partially observed epidemics (unobserved model coordinates, discrete and noisy outbreak data), some limitations remain in practice, mainly related to the amount of augmented data and the adjustment of numerous tuning parameters. In particular, coordinates of dynamic epidemic models being coupled, the presence of unobserved ones leads to a statistically difficult problem. Our aim is to propose a generic inference method easily practicable and able to tackle these issues. Using the properties of epidemics in large populations, we first build a two-layer model. Through a diffusion based approach, we obtain a Gaussian approximation of the epidemic density-dependent Markovian jump process, which represents the state model. The observational model consists in noisy observations of the observed coordinates and is approximated by Gaussian distributions. Then, we develop an inference method based on an approximate likelihood using Kalman filter recursions to estimate parameters of both state and observational models. Performances of estimators of key model parameters are assessed on simulated data of SIR epidemic dynamics for different scenarios with respect to the population size and the number of observations, and compared with those obtained by the currently largely used method of maximum iterated filtering (MIF). Finally, we apply our method on a real data set of influenza outbreak in a North England boarding school in 1978.


翻译:尽管最近制定了处理部分观察到的流行病的方法(未观测的模式坐标、离散和噪音爆发数据),但实际中仍存在一些限制,主要与扩大数据的数量和许多调试参数的调整有关,特别是动态流行病模型的坐标,未观测的模型的存在导致一个统计上困难的问题。我们的目的是提出一种易于使用和能够解决这些问题的通用推论方法。我们利用大量人口的流行病特性,首先建立一个双层模型。我们通过一种基于传播的方法,获得了流行病依赖密度的马尔科维安跳跃过程的戈西近似,这是国家模型。观测模型包括观察到的坐标的杂音观测和戈西安分布的近似值。然后,我们根据使用卡尔曼过滤器估计州和观察模型参数的大概可能性,制定了一种推论方法。我们首先用SIR流行病动态模拟数据对人口规模和观测次数的不同假设进行了评估,并与我们目前采用的一种最新方法相比。我们最终在1978年的英格兰州际空间动态研究所采用了一种最新数据方法。

0
下载
关闭预览

相关内容

卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员