Discretizations of Langevin diffusions provide a powerful method for sampling and Bayesian inference. However, such discretizations require evaluation of the gradient of the potential function. In several real-world scenarios, obtaining gradient evaluations might either be computationally expensive, or simply impossible. In this work, we propose and analyze stochastic zeroth-order sampling algorithms for discretizing overdamped and underdamped Langevin diffusions. Our approach is based on estimating the gradients, based on Gaussian Stein's identities, widely used in the stochastic optimization literature. We provide a comprehensive sample complexity analysis -- number noisy function evaluations to be made to obtain an $\epsilon$-approximate sample in Wasserstein distance -- of stochastic zeroth-order discretizations of both overdamped and underdamped Langevin diffusions, under various noise models. We also propose a variable selection technique based on zeroth-order gradient estimates and establish its theoretical guarantees. Our theoretical contributions extend the practical applicability of sampling algorithms to the noisy black-box and high-dimensional settings.


翻译:朗埃文扩散的分解性提供了一种强大的取样和贝叶斯人的推断方法。然而,这种分解性要求评估潜在功能的梯度。在几种现实世界的假设中,获得梯度评价可能是计算上昂贵的,或者根本不可能。在这项工作中,我们提出和分析关于高压和低压朗埃文扩散的分解零顺序抽样算法。我们的方法是以高斯斯坦的特性为基础,根据高斯斯坦的特性,在随机优化文献中广泛使用。我们提供了全面的抽样复杂性分析 -- -- 要进行数字噪音功能评价,以获得瓦塞斯坦距离的美元近距离样本 -- -- 在各种噪音模型下,高压和低压朗埃文扩散的零序零序分解。我们还提出了基于零调梯度估计的变量选择技术,并建立了理论保证。我们的理论贡献将抽样算法的实际适用性扩大到了热黑箱和高度环境。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年12月10日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月11日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员