To perform Bayesian inference for stochastic simulator models for which the likelihood is not accessible, Likelihood-Free Inference (LFI) relies on simulations from the model. Standard LFI methods can be split according to how these simulations are used: to build an explicit Surrogate Likelihood, or to accept/reject parameter values according to a measure of distance from the observations (Approximate Bayesian Computation (ABC)). In both cases, simulations are adaptively tailored to the value of the observation. Here, we generate parameter-simulation pairs from the model independently on the observation, and use them to learn a conditional exponential family likelihood approximation; to parametrize it, we use Neural Networks whose weights are tuned with Score Matching. With our likelihood approximation, we can employ MCMC for doubly intractable distributions to draw samples from the posterior for any number of observations without additional model simulations, with performance competitive to comparable approaches. Further, the sufficient statistics of the exponential family can be used as summaries in ABC, outperforming the state-of-the-art method in five different models with known likelihood. Finally, we apply our method to a challenging model from meteorology.


翻译:为了对不可能获得的随机模拟模型进行巴耶斯测谎推断,根据模拟模型的模拟模型进行可能无法获取的贝耶斯模拟模型的误判,隐性无误推断(LFI)依赖于模拟模型的模拟。标准 LFI 方法可以按照这些模拟方法的使用方式进行分割: 建立一个清晰的代数隐性模型, 或根据与观测的距离的尺度( 靠近巴伊西亚计算( ABC) 接受/ 反射参数值值 ) 。 在这两种情况下, 模拟是适应性地根据观察的价值量度定制的。 在此情况下, 我们从模型独立地生成参数模拟配对, 并使用它们来学习一个有条件的指数家庭概率近似近; 为了对它进行配对, 我们使用神经网络, 其重量与评分匹配的比对。 我们有可能使用双向的粘合器, 用于从远端的后方分布, 从任何数量的观测中提取样本, 而没有额外的模型模拟, 与可比较的方法。 此外, 指数家族的充足统计数据可以在ABC 中作为摘要使用,, 超越我们所了解的状态- 不同模型中采用的方法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月11日
Arxiv
0+阅读 · 2021年3月11日
Inferred successor maps for better transfer learning
Arxiv
3+阅读 · 2018年6月18日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员