Removing adverse weather conditions like rain, fog, and snow from images is an important problem in many applications. Most methods proposed in the literature have been designed to deal with just removing one type of degradation. Recently, a CNN-based method using neural architecture search (All-in-One) was proposed to remove all the weather conditions at once. However, it has a large number of parameters as it uses multiple encoders to cater to each weather removal task and still has scope for improvement in its performance. In this work, we focus on developing an efficient solution for the all adverse weather removal problem. To this end, we propose TransWeather, a transformer-based end-to-end model with just a single encoder and a decoder that can restore an image degraded by any weather condition. Specifically, we utilize a novel transformer encoder using intra-patch transformer blocks to enhance attention inside the patches to effectively remove smaller weather degradations. We also introduce a transformer decoder with learnable weather type embeddings to adjust to the weather degradation at hand. TransWeather achieves improvements across multiple test datasets over both All-in-One network as well as methods fine-tuned for specific tasks. TransWeather is also validated on real world test images and found to be more effective than previous methods. Implementation code can be accessed at https://github.com/jeya-maria-jose/TransWeather .
翻译:清除雨水、 雾和从图像中降雪等不利的天气条件是许多应用中的一个重要问题。 文献中建议的大多数方法都设计了仅仅消除一种类型的退化的方法。 最近, 以CNN为基础的使用神经结构搜索( All- in- One) 的方法建议同时消除所有天气条件。 但是, 它有许多参数, 因为它使用多个编码器来应对每次天气清除任务, 并且仍然有改进的余地。 在这项工作中, 我们侧重于为所有不利的天气清除问题开发一个有效的解决方案。 为此, 我们提议TranWeather, 一个基于变异器的终端到终端模型, 只有一个编码器和一个解码器, 能够恢复因任何天气条件而退化的图像。 具体地说, 我们使用一个新型变异器编码器来提高补丁内部的注意力, 以有效消除较小的天气退化。 我们还引入一个变异器解码器, 将可学习的天气类型嵌入到手头的天气退化。 Transwether 在多个测试数据集中实现改进。 之前, TRA- transal- real- real- comdeal- real- real- comdeal- lavial- real- real- comduflational- laviewactal- rodufal- rodustrational- rodufal- rodal- compeutal- be agal- sal- roduction- be rod- roduction- sal- sal- sal- rodal- roduction- rodal- rodufal- bedal- rogal- rod- rod- rodal- rodal- rod- rodal- rodal- rod- rod- rodal- compeal- rod- rodal- rodal- combal- rod- compeal- rod- rod- sal- rod- ro- sal- rod- sal- ro- sal- rod- rod- rod- lad- 方法, lad- lad