Continuum mechanics simulators, numerically solving one or more partial differential equations, are essential tools in many areas of science and engineering, but their performance often limits application in practice. Recent modern machine learning approaches have demonstrated their ability to accelerate spatio-temporal predictions, although, with only moderate accuracy in comparison. Here we introduce MultiScaleGNN, a novel multi-scale graph neural network model for learning to infer unsteady continuum mechanics. MultiScaleGNN represents the physical domain as an unstructured set of nodes, and it constructs one or more graphs, each of them encoding different scales of spatial resolution. Successive learnt message passing between these graphs improves the ability of GNNs to capture and forecast the system state in problems encompassing a range of length scales. Using graph representations, MultiScaleGNN can impose periodic boundary conditions as an inductive bias on the edges in the graphs, and achieve independence to the nodes' positions. We demonstrate this method on advection problems and incompressible fluid dynamics. Our results show that the proposed model can generalise from uniform advection fields to high-gradient fields on complex domains at test time and infer long-term Navier-Stokes solutions within a range of Reynolds numbers. Simulations obtained with MultiScaleGNN are between two and four orders of magnitude faster than the ones on which it was trained.


翻译:连续力力学模拟器,在数字上解决一个或多个部分差异方程式,是许多科学和工程领域的基本工具,但它们的性能往往限制了实际应用。最近的现代机器学习方法表明,它们有能力加速时空的预测,尽管比较的精确度较低。在这里,我们引入了多比例图神经网络模型,这是用于学习推导不稳定连续力力力学的新型多比例图形神经网络模型。多比例图GNN将物理域作为非结构化的节点组合,并构建一个或多个图表,其中每个图表都编码了不同的空间分辨率尺度。这些图表之间相继学习的信息传递提高了GNNNNS在一系列长度尺度的问题中捕捉和预测系统状态的能力。使用图形显示,MultiSupGNNNN可以设定定期边界条件,作为图边缘的诱导偏差,并实现结点位置的独立。我们展示了这种适应问题和压力流动动态的方法。我们的结果显示,拟议的模型可以在统一对等定压力阵列的四级阵列中,在经过长期测试的MANS基础阵列域中,在经过长期测试的四级中,在测定的阵列中,在测程中,在测程中,在测程中可以将测得较快的四级阵列的测程中,在测程中,在测程中,在测得的测程中,在测程中,在测程中,测得的测程中可以测得的测程中,在测程。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
149+阅读 · 2020年6月28日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
8+阅读 · 2021年2月19日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员