Weighted timed games are two-player zero-sum games played in a timed automaton equipped with integer weights. We consider optimal reachability objectives, in which one of the players, that we call Min, wants to reach a target location while minimising the cumulated weight. While knowing if Min has a strategy to guarantee a value lower than a given threshold is known to be undecidable (with two or more clocks), several conditions, one of them being the divergence, have been given to recover decidability. In such weighted timed games (like in untimed weighted games in the presence of negative weights), Min may need finite memory to play (close to) optimally. This is thus tempting to try to emulate this finite memory with other strategic capabilities. In this work, we allow the players to use stochastic decisions, both in the choice of transitions and of timing delays. We give for the first time a definition of the expected value in weighted timed games, overcoming several theoretical challenges. We then show that, in divergent weighted timed games, the stochastic value is indeed equal to the classical (deterministic) value, thus proving that Min can guarantee the same value while only using stochastic choices, and no memory.


翻译:权重时限博弈是在定时自动机上玩的两个零和游戏,自动机带有整数权重。我们考虑最优可达性目标,在此目标中,我们称其中之一的玩家为Min,他想要到达目标位置,同时使累积的权重最小化。虽然已知Min是否有策略以保证小于给定阈值的价值是不可判定的(存在两个或更多时钟),但是已经给出了一些条件,其中之一是发散,以恢复可判定性。在这样的权重时限博弈(与存在负权重的无定时权重博弈一样),Min可能需要有限的记忆来实现(接近)最优。因此,尝试用其他战略能力模拟有限记忆是很有诱惑力的。在这项工作中,我们允许玩家在选择跃迁和定时延迟时使用随机决策。我们首次给出了权重时限博弈中预期值的定义,克服了几个理论挑战。然后,我们证明在发散的权重时限博弈中,随机值确实等于经典(确定性)值,从而证明Min可以只使用随机选择而无需记忆来保证相同的价值。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
15+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月23日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
15+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员