We study infinite limits of neural network quantum states ($\infty$-NNQS), which exhibit representation power through ensemble statistics, and also tractable gradient descent dynamics. Ensemble averages of Renyi entropies are expressed in terms of neural network correlators, and architectures that exhibit volume-law entanglement are presented. A general framework is developed for studying the gradient descent dynamics of neural network quantum states (NNQS), using a quantum state neural tangent kernel (QS-NTK). For $\infty$-NNQS the training dynamics is simplified, since the QS-NTK becomes deterministic and constant. An analytic solution is derived for quantum state supervised learning, which allows an $\infty$-NNQS to recover any target wavefunction. Numerical experiments on finite and infinite NNQS in the transverse field Ising model and Fermi Hubbard model demonstrate excellent agreement with theory. $\infty$-NNQS opens up new opportunities for studying entanglement and training dynamics in other physics applications, such as in finding ground states.
翻译:我们研究神经网络量子的无限极限($\infty$-NNQS),这些神经网络量子通过共同统计和可移动的梯度下移动态表现出代表力。Renyi 的混合平均值以神经网络连接器表示,并展示了量法缠绕的建筑。我们开发了一个总体框架,用于研究神经网络量子(NNQS)的梯度下移动态,使用量子州神经切核内核(QS-NTK)来进行。由于QS-NTK变得具有确定性和恒定性,因此对培训动态进行了简化。一个分析解决方案是用于量子状态监督的学习,允许用$infty$-NNNQS来恢复任何目标波变功能。在反向领域Ising模型和Fermi Hubbard模型中进行有限和无限NNQS的数值实验显示了与理论的极好一致。$\infty$-NNNQS为其他物理应用中的纠结点寻找新机会。